Advanced digitisation and AI-powered data processing for Cultural Heritage: the HERITALISE Project
dc.contributor.author | Matrone, Francesca | en_US |
dc.contributor.author | Chiabrando, Filiberto | en_US |
dc.contributor.author | Lingua, Andrea Maria | en_US |
dc.contributor.editor | Campana, Stefano | en_US |
dc.contributor.editor | Ferdani, Daniele | en_US |
dc.contributor.editor | Graf, Holger | en_US |
dc.contributor.editor | Guidi, Gabriele | en_US |
dc.contributor.editor | Hegarty, Zackary | en_US |
dc.contributor.editor | Pescarin, Sofia | en_US |
dc.contributor.editor | Remondino, Fabio | en_US |
dc.date.accessioned | 2025-09-05T21:49:22Z | |
dc.date.available | 2025-09-05T21:49:22Z | |
dc.date.issued | 2025 | |
dc.description.abstract | The digitisation of cultural heritage assets ensures an accurate digital archive for future generations and serves as a powerful tool for conveying the knowledge and significance of material heritage to the broader public. This contribution presents the overall goals of the HERITALISE project and the foreseen activities, which will combine AI tools for data processing and metadata and paradata creation. NeRF, 3D Gaussian Splatting and LLMs will be involved in the project with different aims ensuring the advancement of digitisation methodologies and standardisation in the cultural heritage field. | en_US |
dc.description.sectionheaders | Posters | |
dc.description.seriesinformation | Digital Heritage | |
dc.identifier.doi | 10.2312/dh.20253184 | |
dc.identifier.isbn | 978-3-03868-277-6 | |
dc.identifier.pages | 4 pages | |
dc.identifier.uri | https://doi.org/10.2312/dh.20253184 | |
dc.identifier.uri | https://diglib.eg.org/handle/10.2312/dh20253184 | |
dc.publisher | The Eurographics Association | en_US |
dc.rights | Attribution 4.0 International License | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject | CCS Concepts: General and reference → Cros-computing tools and techniques → Evaluation; Software and its engineering → Software organization and properties → Extra functional properties → Interoperability; Computing methodologies → Machine learning. | |
dc.subject | General and reference → Cros | |
dc.subject | computing tools and techniques → Evaluation | |
dc.subject | Software and its engineering → Software organization and properties → Extra functional properties → Interoperability | |
dc.subject | Computing methodologies → Machine learning. | |
dc.title | Advanced digitisation and AI-powered data processing for Cultural Heritage: the HERITALISE Project | en_US |
Files
Original bundle
1 - 1 of 1