Fine-Tuning LayoutParser for the Analysis of Historical Italian Newspapers

dc.contributor.authorImboden, Silvanoen_US
dc.contributor.authorMattei, Lucaen_US
dc.contributor.authorMarconi, Gabrieleen_US
dc.contributor.authorAndrucci, Federicoen_US
dc.contributor.authorGianelli, Alexen_US
dc.contributor.editorCampana, Stefanoen_US
dc.contributor.editorFerdani, Danieleen_US
dc.contributor.editorGraf, Holgeren_US
dc.contributor.editorGuidi, Gabrieleen_US
dc.contributor.editorHegarty, Zackaryen_US
dc.contributor.editorPescarin, Sofiaen_US
dc.contributor.editorRemondino, Fabioen_US
dc.date.accessioned2025-09-05T21:50:02Z
dc.date.available2025-09-05T21:50:02Z
dc.date.issued2025
dc.description.abstractWe present an initiative aimed at fine-tuning the LayoutParser framework to develop an AI model capable of understanding and decomposing newspaper pages. If successful, this effort would enable the large-scale processing of entire years of Italian newspaper issues, offering significant benefits to a wide range of researchers across multiple disciplines.en_US
dc.description.sectionheadersPosters
dc.description.seriesinformationDigital Heritage
dc.identifier.doi10.2312/dh.20253275
dc.identifier.isbn978-3-03868-277-6
dc.identifier.pages2 pages
dc.identifier.urihttps://doi.org/10.2312/dh.20253275
dc.identifier.urihttps://diglib.eg.org/handle/10.2312/dh20253275
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Computing methodologies → Computer vision; Machine learning applications; Information systems → Digital libraries and archives; Applied computing → Document management and text processing
dc.subjectComputing methodologies → Computer vision
dc.subjectMachine learning applications
dc.subjectInformation systems → Digital libraries and archives
dc.subjectApplied computing → Document management and text processing
dc.titleFine-Tuning LayoutParser for the Analysis of Historical Italian Newspapersen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
dh20253275.pdf
Size:
1.47 MB
Format:
Adobe Portable Document Format