Volume 44 (2025)
Permanent URI for this community
Browse
Browsing Volume 44 (2025) by Title
Now showing 1 - 20 of 219
Results Per Page
Sort Options
Item 2D Neural Fields with Learned Discontinuities(The Eurographics Association and John Wiley & Sons Ltd., 2025) Liu, Chenxi; Wang, Siqi; Fisher, Matthew; Aneja, Deepali; Jacobson, Alec; Bousseau, Adrien; Day, AngelaEffective representation of 2D images is fundamental in digital image processing, where traditional methods like raster and vector graphics struggle with sharpness and textural complexity, respectively. Current neural fields offer high fidelity and resolution independence but require predefined meshes with known discontinuities, restricting their utility. We observe that by treating all mesh edges as potential discontinuities, we can represent the discontinuity magnitudes as continuous variables and optimize. We further introduce a novel discontinuous neural field model that jointly approximates the target image and recovers discontinuities. Through systematic evaluations, our neural field outperforms other methods that fit unknown discontinuities with discontinuous representations, exceeding Field of Junction and Boundary Attention by over 11dB in both denoising and super-resolution tasks and achieving 3.5× smaller Chamfer distances than Mumford-Shah-based methods. It also surpasses InstantNGP with improvements of more than 5dB (denoising) and 10dB (super-resolution). Additionally, our approach shows remarkable capability in approximating complex artistic and natural images and cleaning up diffusion-generated depth maps.Item 4-LEGS: 4D Language Embedded Gaussian Splatting(The Eurographics Association and John Wiley & Sons Ltd., 2025) Fiebelman, Gal; Cohen, Tamir; Morgenstern, Ayellet; Hedman, Peter; Averbuch-Elor, Hadar; Bousseau, Adrien; Day, AngelaThe emergence of neural representations has revolutionized our means for digitally viewing a wide range of 3D scenes, enabling the synthesis of photorealistic images rendered from novel views. Recently, several techniques have been proposed for connecting these low-level representations with the high-level semantics understanding embodied within the scene. These methods elevate the rich semantic understanding from 2D imagery to 3D representations, distilling high-dimensional spatial features onto 3D space. In our work, we are interested in connecting language with a dynamic modeling of the world. We show how to lift spatio-temporal features to a 4D representation based on 3D Gaussian Splatting. This enables an interactive interface where the user can spatiotemporally localize events in the video from text prompts. We demonstrate our system on public 3D video datasets of people and animals performing various actions.Item Accessible Text Descriptions for UpSet Plots(The Eurographics Association and John Wiley & Sons Ltd., 2025) McNutt, Andrew; McCracken, Maggie K.; Eliza, Ishrat Jahan; Hajas, Daniel; Wagoner, Jake; Lanza, Nate; Wilburn, Jack; Creem-Regehr, Sarah; Lex, Alexander; Aigner, Wolfgang; Andrienko, Natalia; Wang, BeiData visualizations are typically not accessible to blind and low-vision (BLV) users. Automatically generating text descriptions offers an enticing mechanism for democratizing access to the information held in complex scientific charts, yet appropriate procedures for generating those texts remain elusive. Pursuing this issue, we study a single complex chart form: UpSet plots. UpSet Plots are a common way to analyze set data, an area largely unexplored by prior accessibility literature. By analyzing the patterns present in real-world examples, we develop a system for automatically captioning any UpSet plot. We evaluated the utility of our captions via semi-structured interviews with (N=11) BLV users and found that BLV users find them informative. In extensions, we find that sighted users can use our texts similarly to UpSet plots and that they are better than naive LLM usage.Item Adaptive Multi-view Radiance Caching for Heterogeneous Participating Media(The Eurographics Association and John Wiley & Sons Ltd., 2025) Stadlbauer, Pascal; Tatzgern, Wolfgang; Mueller, Joerg H.; Winter, Martin; Stojanovic, Robert; Weinrauch, Alexander; Steinberger, Markus; Bousseau, Adrien; Day, AngelaAchieving lifelike atmospheric effects, such as fog, is essential in creating immersive environments and poses a formidable challenge in real-time rendering. Highly realistic rendering of complex lighting interacting with dynamic fog can be very resourceintensive, due to light bouncing through a complex participating media multiple times. We propose an approach that uses a multi-layered spherical harmonics probe grid to share computations temporarily. In addition, this world-space storage enables the sharing of radiance data between multiple viewers. In the context of cloud rendering this means faster rendering and a significant enhancement in overall rendering quality with efficient resource utilization.Item The Affine Heat Method(The Eurographics Association and John Wiley & Sons Ltd., 2025) Soliman, Yousuf; Sharp, Nicholas; Attene, Marco; Sellán, SilviaThis work presents the Affine Heat Method for computing logarithmic maps. These maps are local surface parameterizations defined by the direction and distance along shortest geodesic paths from a given source point, and arise in many geometric tasks from local texture mapping to geodesic distance-based optimization. Our main insight is to define a connection Laplacian with a homogeneous coordinate accounting for the translation between tangent coordinate frames; the action of short-time heat flow under this Laplacian gives both the direction and distance from the source, along shortest geodesics. The resulting numerical method is straightforward to implement, fast, and improves accuracy compared to past approaches. We present two variants of the method, one of which enables pre-computation for fast repeated solves, while the other resolves the map even near the cut locus in high detail. As with prior heat methods, our approach can be applied in any dimension and to any spatial discretization, including polygonal meshes and point clouds, which we demonstrate along with applications of the method.Item All-frequency Full-body Human Image Relighting(The Eurographics Association and John Wiley & Sons Ltd., 2025) Tajima, Daichi; Kanamori, Yoshihiro; Endo, Yuki; Bousseau, Adrien; Day, AngelaRelighting of human images enables post-photography editing of lighting effects in portraits. The current mainstream approach uses neural networks to approximate lighting effects without explicitly accounting for the principle of physical shading. As a result, it often has difficulty representing high-frequency shadows and shading. In this paper, we propose a two-stage relighting method that can reproduce physically-based shadows and shading from low to high frequencies. The key idea is to approximate an environment light source with a set of a fixed number of area light sources. The first stage employs supervised inverse rendering from a single image using neural networks and calculates physically-based shading. The second stage then calculates shadow for each area light and sums up to render the final image. We propose to make soft shadow mapping differentiable for the area-light approximation of environment lighting. We demonstrate that our method can plausibly reproduce all-frequency shadows and shading caused by environment illumination, which have been difficult to reproduce using existing methods.Item Anisotropic Gauss Reconstruction and Global Orientation with Octree-based Acceleration(The Eurographics Association and John Wiley & Sons Ltd., 2025) Ma, Yueji; Shen, Jialu; Meng, Yanzun; Xiao, Dong; Shi, Zuoqiang; Wang, Bin; Attene, Marco; Sellán, SilviaUnoriented surface reconstruction is an important task in computer graphics. Recently, methods based on the Gauss formula or winding number have achieved state-of-the-art performance in both orientation and surface reconstruction. The Gauss formula or winding number, derived from the fundamental solution of the Laplace equation, initially found applications in calculating potentials in electromagnetism. Inspired by the practical necessity of calculating potentials in diverse electromagnetic media, we consider the anisotropic Laplace equation to derive the anisotropic Gauss formula and apply it to surface reconstruction, called ''anisotropic Gauss reconstruction''. By leveraging the flexibility of anisotropic coefficients, additional constraints can be introduced to the indicator function. This results in a stable linear system, eliminating the need for any artificial regularization. In addition, the oriented normals can be refined by computing the gradient of the indicator function, ultimately producing high-quality normals and surfaces. Regarding the space/time complexity, we propose an octree-based acceleration algorithm to achieve a space complexity of O(N) and a time complexity of O(NlogN). Our method can reconstruct ultra-large-scale models (exceeding 5 million points) within 4 minutes on an NVIDIA RTX 4090 GPU. Extensive experiments demonstrate that our method achieves state-of-the-art performance in both orientation and reconstruction, particularly for models with thin structures, small holes, or high genus. Both CuPy-based and CUDA-accelerated implementations are made publicly available at https://github.com/mayueji/AGR.Item Approximating Procedural Models of 3D Shapes with Neural Networks(The Eurographics Association and John Wiley & Sons Ltd., 2025) Hossain, Ishtiaque; Shen, I-Chao; Kaick, Oliver van; Bousseau, Adrien; Day, AngelaProcedural modeling is a popular technique for 3D content creation and offers a number of advantages over alternative techniques for modeling 3D shapes. However, given a procedural model, predicting the procedural parameters of existing data provided in different modalities can be challenging. This is because the data may be in a different representation than the one generated by the procedural model, and procedural models are usually not invertible, nor are they differentiable. In this paper, we address these limitations and introduce an invertible and differentiable representation for procedural models. We approximate parameterized procedures with a neural network architecture NNProc that learns both the forward and inverse mapping of the procedural model by aligning the latent spaces of shape parameters and shapes. The network is trained in a manner that is agnostic to the inner workings of the procedural model, implying that models implemented in different languages or systems can be used. We demonstrate how the proposed representation can be used for both forward and inverse procedural modeling. Moreover, we show how NNProc can be used in conjunction with optimization for applications such as shape reconstruction from an image or a 3D Gaussian Splatting.Item Arches: A Cycle-Level Hardware Simulation Framework for Exploring Massively Parallel Ray Tracing Architectures(The Eurographics Association and John Wiley & Sons Ltd., 2025) Haydel, Jacob; Bhokare, Gaurav; Zeng, Kunnong; Hong, Pengpei; Kondguli, Sushant; Budge, Brian; Brunvand, Erik; Yuksel, Cem; Knoll, Aaron; Peters, ChristophWe introduce Arches, a hardware simulation framework designed to explore and evaluate massively parallel ray-tracing architectures. Operating at the cycle level, Arches captures detailed performance metrics, including computational throughput, onchip data movement across processors, caches, and off-chip communication via an accurate memory system model. The framework is modular, allowing flexible configuration and interconnection of processor cores, caches, and custom hardware units, enabling easy exploration of diverse hardware architectures. Arches supports high-performance parallel execution, simulating complex ray tracing workloads to image completion. It leverages the GNU toolchain, allowing users to write C++ software targeting both the simulated architecture and native execution for debugging, including support for custom instructions to control specialized hardware components. The framework provides comprehensive performance instrumentation, offering insights into time-varying statistics across all modules and identifying performance bottlenecks. Our evaluations demonstrate that Arches delivers performance estimates closely matching real hardware, offering faster and more accurate simulations than existing open-source hardware simulators. Its modularity also makes it a valuable tool for exploring alternative parallel computing strategies for high-performance ray tracing, and its extensibility enables adaptation for other workloads or general-purpose computation.Item Arrange and Traverse Algorithm for Computation of Reeb Spaces of Piecewise Linear Maps(The Eurographics Association and John Wiley & Sons Ltd., 2025) Hristov, Petar; Sakurai, Daisuke; Carr, Hamish; Hotz, Ingrid; Masood, Talha Bin; Attene, Marco; Sellán, SilviaWe present the first combinatorial algorithm for efficiently computing the Reeb space in all dimensions. The Reeb space is a higher-dimensional generalization of the Reeb graph, which is standard practice in the analysis of scalar fields, along with other computational topology tools such as persistent homology and the Morse-Smale complex. One significant limitation of topological tools for scalar fields is that data often involves multiple variables, where joint analysis is more insightful. Generalizing topological data structures to multivariate data has proven challenging and the Reeb space is one of the few available options. However, none of the existing algorithms can efficiently compute the Reeb space in arbitrary dimensions and there are no available implementations which are robust with respect to numerical errors. We propose a new algorithm for computing the Reeb space of a generic piecewise linear map over a simplicial mesh of any dimension called arrange and traverse. We implement a robust specialization of our algorithm for tetrahedral meshes and evaluate it on real-life data.Item Artist-Inator: Text-based, Gloss-aware Non-photorealistic Stylization(The Eurographics Association and John Wiley & Sons Ltd., 2025) Subias, Jose Daniel; Daniel-Soriano, Saúl; Gutierrez, Diego; Serrano, Ana; Wang, Beibei; Wilkie, AlexanderLarge diffusion models have made a remarkable leap synthesizing high-quality artistic images from text descriptions. However, these powerful pre-trained models still lack control to guide key material appearance properties, such as gloss. In this work, we present a threefold contribution: (1) we analyze how gloss is perceived across different artistic styles (i.e., oil painting, watercolor, ink pen, charcoal, and soft crayon); (2) we leverage our findings to create a dataset with 1,336,272 stylized images of many different geometries in all five styles, including automatically-computed text descriptions of their appearance (e.g., ''A glossy bunny hand painted with an orange soft crayon''); and (3) we train ControlNet to condition Stable Diffusion XL synthesizing novel painterly depictions of new objects, using simple inputs such as edge maps, hand-drawn sketches, or clip arts. Compared to previous approaches, our framework yields more accurate results despite the simplified input, as we show both quantitative and qualitatively.Item ASMR: Adaptive Skeleton-Mesh Rigging and Skinning via 2D Generative Prior(The Eurographics Association and John Wiley & Sons Ltd., 2025) Hong, Seokhyeon; Choi, Soojin; Kim, Chaelin; Cha, Sihun; Noh, Junyong; Bousseau, Adrien; Day, AngelaDespite the growing accessibility of skeletal motion data, integrating it for animating character meshes remains challenging due to diverse configurations of both skeletons and meshes. Specifically, the body scale and bone lengths of the skeleton should be adjusted in accordance with the size and proportions of the mesh, ensuring that all joints are accurately positioned within the character mesh. Furthermore, defining skinning weights is complicated by variations in skeletal configurations, such as the number of joints and their hierarchy, as well as differences in mesh configurations, including their connectivity and shapes. While existing approaches have made efforts to automate this process, they hardly address the variations in both skeletal and mesh configurations. In this paper, we present a novel method for the automatic rigging and skinning of character meshes using skeletal motion data, accommodating arbitrary configurations of both meshes and skeletons. The proposed method predicts the optimal skeleton aligned with the size and proportion of the mesh as well as defines skinning weights for various meshskeleton configurations, without requiring explicit supervision tailored to each of them. By incorporating Diffusion 3D Features (Diff3F) as semantic descriptors of character meshes, our method achieves robust generalization across different configurations. To assess the performance of our method in comparison to existing approaches, we conducted comprehensive evaluations encompassing both quantitative and qualitative analyses, specifically examining the predicted skeletons, skinning weights, and deformation quality.Item Atomizer: Beyond Non-Planar Slicing for Fused Filament Fabrication(The Eurographics Association and John Wiley & Sons Ltd., 2025) Chermain, Xavier; Cocco, Giovanni; Zanni, Cédric; Garner, Eric; Hugron, Pierre-Alexandre; Lefebvre, Sylvain; Attene, Marco; Sellán, SilviaFused filament fabrication (FFF) enables users to quickly design and fabricate parts with unprecedented geometric complexity, fine-tuning both the structural and aesthetic properties of each object. Nevertheless, the full potential of this technology has yet to be realized, as current slicing methods fail to fully exploit the deposition freedom offered by modern 3D printers. In this work, we introduce a novel approach to toolpath generation that moves beyond the traditional layer-based concept. We use frames, referred to as atoms, as solid elements instead of slices. We optimize the distribution of atoms within the part volume to ensure even spacing and smooth orientation while accurately capturing the part's geometry. Although these atoms collectively represent the complete object, they do not inherently define a fabrication plan. To address this, we compute an extrusion toolpath as an ordered sequence of atoms that, when followed, provides a collision-free fabrication strategy. This general approach is robust, requires minimal user intervention compared to existing techniques, and integrates many of the best features into a unified framework: precise deposition conforming to non-planar surfaces, effective filling of narrow features - down to a single path - and the capability to locally print vertical structures before transitioning elsewhere. Additionally, it enables entirely new capabilities, such as anisotropic appearance fabrication on curved surfaces.Item Automatic Inbetweening for Stroke‐Based Painterly Animation(Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2024) Barroso, Nicolas; Fondevilla, Amélie; Vanderhaeghe, DavidPainterly 2D animation, like the paint‐on‐glass technique, is a tedious task performed by skilled artists, primarily using traditional manual methods. Although CG tools can simplify the creation process, previous works often focus on temporal coherence, which typically results in the loss of the handmade look and feel. In contrast to cartoon animation, where regions are typically filled with smooth gradients, stroke‐based stylized 2D animation requires careful consideration of how shapes are filled, as each stroke may be perceived individually. We propose a method to generate intermediate frames using example keyframes and a motion description. This method allows artists to create only one image for every five to 10 output images in the animation, while the automatically generated intermediate frames provide plausible inbetween frames.Item Axis-Normalized Ray-Box Intersection(The Eurographics Association and John Wiley & Sons Ltd., 2025) Friederichs, Fabian; Benthin, Carsten; Grogorick, Steve; Eisemann, Elmar; Magnor, Marcus; Eisemann, Martin; Bousseau, Adrien; Day, AngelaRay-axis aligned bounding box intersection tests play a crucial role in the runtime performance of many rendering applications, driven not by complexity but mainly by the volume of tests required. While existing solutions were believed to be pretty much optimal in terms of runtime on current hardware, our paper introduces a new intersection test requiring fewer arithmetic operations compared to all previous methods. By transforming the ray we eliminate the need for one third of the traditional bounding-slab tests and achieve a speed enhancement of approximately 13.8% or 10.9%, depending on the compiler.We present detailed runtime analyses in various scenarios.Item Bayesian 3D Shape Reconstruction from Noisy Points and Normals(The Eurographics Association and John Wiley & Sons Ltd., 2025) Pujol, Eduard; Chica, Antonio; Attene, Marco; Sellán, SilviaReconstructing three-dimensional shapes from point clouds remains a central challenge in geometry processing, particularly due to the inherent uncertainties in real-world data acquisition. In this work, we introduce a novel Bayesian framework that explicitly models and propagates uncertainty from both input points and their estimated normals. Our method incorporates the uncertainty of normals derived via Principal Component Analysis (PCA) from noisy input points. Building upon the Smooth Signed Distance (SSD) reconstruction algorithm, we integrate a smoothness prior based on the curvatures of the resulting implicit function following Gaussian behavior. Our method reconstructs a shape represented as a distribution, from which sampling and statistical queries regarding the shape's properties are possible. Additionally, because of the high cost of computing the variance of the resulting distribution, we develop efficient techniques for variance computation. Our approach thus combines two common steps of the geometry processing pipeline, normal estimation and surface reconstruction, while computing the uncertainty of the output of each of these steps.Item Benchmarking Visual Language Models on Standardized Visualization Literacy Tests(The Eurographics Association and John Wiley & Sons Ltd., 2025) Pandey, Saugat; Ottley, Alvitta; Aigner, Wolfgang; Andrienko, Natalia; Wang, BeiThe increasing integration of Visual Language Models (VLMs) into visualization systems demands a comprehensive understanding of their visual interpretation capabilities and constraints. While existing research has examined individual models, systematic comparisons of VLMs' visualization literacy remain unexplored. We bridge this gap through a rigorous, first-ofits- kind evaluation of four leading VLMs (GPT-4, Claude, Gemini, and Llama) using standardized assessments: the Visualization Literacy Assessment Test (VLAT) and Critical Thinking Assessment for Literacy in Visualizations (CALVI). Our methodology uniquely combines randomized trials with structured prompting techniques to control for order effects and response variability - a critical consideration overlooked in many VLM evaluations. Our analysis reveals that while specific models demonstrate competence in basic chart interpretation (Claude achieving 67.9% accuracy on VLAT), all models exhibit substantial difficulties in identifying misleading visualization elements (maximum 30.0% accuracy on CALVI). We uncover distinct performance patterns: strong capabilities in interpreting conventional charts like line charts (76-96% accuracy) and detecting hierarchical structures (80-100% accuracy), but consistent difficulties with data-dense visualizations involving multiple encodings (bubble charts: 18.6-61.4%) and anomaly detection (25-30% accuracy). Significantly, we observe distinct uncertainty management behavior across models, with Gemini displaying heightened caution (22.5% question omission) compared to others (7-8%). These findings provide crucial insights for the visualization community by establishing reliable VLM evaluation benchmarks, identifying areas where current models fall short, and highlighting the need for targeted improvements in VLM architectures for visualization tasks. To promote reproducibility, encourage further research, and facilitate benchmarking of future VLMs, our complete evaluation framework, including code, prompts, and analysis scripts, is available at https://github.com/washuvis/VisLit-VLM-Eval.Item Beyond Complete Shapes: A Benchmark for Quantitative Evaluation of 3D Shape Matching Algorithms(The Eurographics Association and John Wiley & Sons Ltd., 2025) Ehm, Viktoria; Amrani, Nafie El; Xie, Yizheng; Bastian, Lennart; Gao, Maolin; Wang, Weikang; Sang, Lu; Cao, Dongliang; Weißberg, Tobias; Lähner, Zorah; Cremers, Daniel; Bernard, Florian; Attene, Marco; Sellán, SilviaFinding correspondences between 3D deformable shapes is an important and long-standing problem in geometry processing, computer vision, graphics, and beyond. While various shape matching datasets exist, they are mostly static or limited in size, restricting their adaptation to different problem settings, including both full and partial shape matching. In particular the existing partial shape matching datasets are small (fewer than 100 shapes) and thus unsuitable for data-hungry machine learning approaches. Moreover, the type of partiality present in existing datasets is often artificial and far from realistic. To address these limitations, we introduce a generic and flexible framework for the procedural generation of challenging full and partial shape matching datasets. Our framework allows the propagation of custom annotations across shapes, making it useful for various applications. By utilising our framework and manually creating cross-dataset correspondences between seven existing (complete geometry) shape matching datasets, we propose a new large benchmark BeCoS with a total of 2543 shapes. Based on this, we offer several challenging benchmark settings, covering both full and partial matching, for which we evaluate respective state-of-the-art methods as baselines. Visualisations and code of our benchmark can be found at: https://nafieamrani.github.io/BeCoS/.Item Beyond Entertainment: An Investigation of Externalization Design in Video Games(The Eurographics Association and John Wiley & Sons Ltd., 2025) Becker, Franziska; Warnking, Rene Pascal; Brückler, Hendrik; Blascheck, Tanja; Aigner, Wolfgang; Andrienko, Natalia; Wang, BeiThis article investigates when and how video games enable players to create externalizations in a diverse sample of 388 video games. We follow a grounded-theory approach, extracting externalizations from video games to explore design ideas and relate them to practices in visualization. Video games often engage players in problem-solving activities, like solving a murder mystery or optimizing a strategy, requiring players to interpret heterogeneous data-much like tasks in the visualization domain. In many cases, externalizations can help reduce a user's mental load by making tangible what otherwise only lives in their head, acting as external storage or a visual playground. Over five coding phases, we created a hierarchy of 277 tags to describe the video games in our collection, from which we extracted 169 externalizations. We characterize these externalizations along nine dimensions like mental load, visual encodings, and motivations, resulting in 13 categories divided into four clusters: quick access, storage, sensemaking, and communication. We formulate considerations to guide future work, looking at tasks and challenges, naming potentials for inspiration, and discussing which topics could advance the state of externalization.Item BI‐LAVA: Biocuration With Hierarchical Image Labelling Through Active Learning and Visual Analytics(Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2024) Trelles, Juan; Wentzel, Andrew; Berrios, William; Shatkay, Hagit; Marai, G. ElisabetaIn the biomedical domain, taxonomies organize the acquisition modalities of scientific images in hierarchical structures. Such taxonomies leverage large sets of correct image labels and provide essential information about the importance of a scientific publication, which could then be used in biocuration tasks. However, the hierarchical nature of the labels, the overhead of processing images, the absence or incompleteness of labelled data and the expertise required to label this type of data impede the creation of useful datasets for biocuration. From a multi‐year collaboration with biocurators and text‐mining researchers, we derive an iterative visual analytics and active learning (AL) strategy to address these challenges. We implement this strategy in a system called BI‐LAVA—Biocuration with Hierarchical Image Labelling through Active Learning and Visual Analytics. BI‐LAVA leverages a small set of image labels, a hierarchical set of image classifiers and AL to help model builders deal with incomplete ground‐truth labels, target a hierarchical taxonomy of image modalities and classify a large pool of unlabelled images. BI‐LAVA's front end uses custom encodings to represent data distributions, taxonomies, image projections and neighbourhoods of image thumbnails, which help model builders explore an unfamiliar image dataset and taxonomy and correct and generate labels. An evaluation with machine learning practitioners shows that our mixed human–machine approach successfully supports domain experts in understanding the characteristics of classes within the taxonomy, as well as validating and improving data quality in labelled and unlabelled collections.