Volume 44 (2025)
Permanent URI for this community
Browse
Browsing Volume 44 (2025) by Subject "aided design"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Atomizer: Beyond Non-Planar Slicing for Fused Filament Fabrication(The Eurographics Association and John Wiley & Sons Ltd., 2025) Chermain, Xavier; Cocco, Giovanni; Zanni, Cédric; Garner, Eric; Hugron, Pierre-Alexandre; Lefebvre, Sylvain; Attene, Marco; Sellán, SilviaFused filament fabrication (FFF) enables users to quickly design and fabricate parts with unprecedented geometric complexity, fine-tuning both the structural and aesthetic properties of each object. Nevertheless, the full potential of this technology has yet to be realized, as current slicing methods fail to fully exploit the deposition freedom offered by modern 3D printers. In this work, we introduce a novel approach to toolpath generation that moves beyond the traditional layer-based concept. We use frames, referred to as atoms, as solid elements instead of slices. We optimize the distribution of atoms within the part volume to ensure even spacing and smooth orientation while accurately capturing the part's geometry. Although these atoms collectively represent the complete object, they do not inherently define a fabrication plan. To address this, we compute an extrusion toolpath as an ordered sequence of atoms that, when followed, provides a collision-free fabrication strategy. This general approach is robust, requires minimal user intervention compared to existing techniques, and integrates many of the best features into a unified framework: precise deposition conforming to non-planar surfaces, effective filling of narrow features - down to a single path - and the capability to locally print vertical structures before transitioning elsewhere. Additionally, it enables entirely new capabilities, such as anisotropic appearance fabrication on curved surfaces.Item Exact and Efficient Mesh-Kernel Generation(The Eurographics Association and John Wiley & Sons Ltd., 2025) Nehring-Wirxel, Julius; Kern, Paul; Trettner, Philip; Kobbelt, Leif; Attene, Marco; Sellán, SilviaThe mesh kernel for a star-shaped mesh is a convex polyhedron given by the intersection of all half-spaces defined by the faces of the input mesh. For all non-star-shaped meshes, the kernel is empty. We present a method to robustly and efficiently compute the kernel of an input triangle mesh by using exact plane-based integer arithmetic to compute the mesh kernel. We make use of several ways to accelerate the computation time. Since many applications just require information if a non-empty mesh kernel exists, we also propose a method to efficiently determine whether a kernel exists by developing an exact plane-based linear program solver. We evaluate our method on a large dataset of triangle meshes and show that in contrast to previous methods, our approach is exact and robust while maintaining a high performance. It is on average two orders of magnitude faster than other exact state-of-the-art methods and often about one order of magnitude faster than non-exact methods.Item Inverse Simulation of Radiative Thermal Transport(The Eurographics Association and John Wiley & Sons Ltd., 2025) Freude, Christian; Lipp, Lukas; Zezulka, Matthias; Rist, Florian; Wimmer, Michael; Hahn, David; Bousseau, Adrien; Day, AngelaThe early phase of urban planning and architectural design has a great impact on the thermal loads and characteristics of constructed buildings. It is, therefore, important to efficiently simulate thermal effects early on and rectify possible problems. In this paper, we present an inverse simulation of radiative heat transport and a differentiable photon-tracing approach. Our method utilizes GPU-accelerated ray tracing to speed up both the forward and adjoint simulation. Moreover, we incorporate matrix compression to further increase the efficiency of our thermal solver and support larger scenes. In addition to our differentiable photon-tracing approach, we introduce a novel approximate edge sampling scheme that re-uses primary samples instead of relying on explicit edge samples or auxiliary rays to resolve visibility discontinuities. Our inverse simulation system enables designers to not only predict the temperature distribution, but also automatically optimize the design to improve thermal comfort and avoid problematic configurations. We showcase our approach using several examples in which we optimize the placement of buildings or their facade geometry. Our approach can be used to optimize arbitrary geometric parameterizations and supports steady-state, as well as transient simulations.