39-Issue 3
Permanent URI for this collection
Browse
Browsing 39-Issue 3 by Issue Date
Now showing 1 - 20 of 49
Results Per Page
Sort Options
Item Structure and Empathy in Visual Data Storytelling: Evaluating their Influence on Attitude(The Eurographics Association and John Wiley & Sons Ltd., 2020) Liem, Johannes; Perin, Charles; Wood, Jo; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaIn the visualization community, it is often assumed that visual data storytelling increases memorability and engagement, making it more effective at communicating information. However, many assumptions about the efficacy of storytelling in visualization lack empirical evaluation. Contributing to an emerging body of work, we study whether selected techniques commonly used in visual data storytelling influence people's attitudes towards immigration. We compare (a) personal visual narratives designed to generate empathy; (b) structured visual narratives of aggregates of people; and (c) an exploratory visualization without narrative acting as a control condition. We conducted two crowdsourced between-subject studies comparing the three conditions, each with 300 participants. To assess the differences in attitudes between conditions, we adopted established scales from the social sciences used in the European Social Survey (ESS). Although we found some differences between conditions, the effects on people's attitudes are smaller than we expected. Our findings suggest that we need to be more careful when it comes to our expectations about the effects visual data storytelling can have on attitudes.Item PEAX: Interactive Visual Pattern Search in Sequential Data Using Unsupervised Deep Representation Learning(The Eurographics Association and John Wiley & Sons Ltd., 2020) Lekschas, Fritz; Peterson, Brant; Haehn, Daniel; Ma, Eric; Gehlenborg, Nils; Pfister, Hanspeter; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaWe present PEAX, a novel feature-based technique for interactive visual pattern search in sequential data, like time series or data mapped to a genome sequence. Visually searching for patterns by similarity is often challenging because of the large search space, the visual complexity of patterns, and the user's perception of similarity. For example, in genomics, researchers try to link patterns in multivariate sequential data to cellular or pathogenic processes, but a lack of ground truth and high variance makes automatic pattern detection unreliable. We have developed a convolutional autoencoder for unsupervised representation learning of regions in sequential data that can capture more visual details of complex patterns compared to existing similarity measures. Using this learned representation as features of the sequential data, our accompanying visual query system enables interactive feedback-driven adjustments of the pattern search to adapt to the users' perceived similarity. Using an active learning sampling strategy, PEAX collects user-generated binary relevance feedback. This feedback is used to train a model for binary classification, to ultimately find other regions that exhibit patterns similar to the search target. We demonstrate PEAX's features through a case study in genomics and report on a user study with eight domain experts to assess the usability and usefulness of PEAX. Moreover, we evaluate the effectiveness of the learned feature representation for visual similarity search in two additional user studies. We find that our models retrieve significantly more similar patterns than other commonly used techniques.Item Sunspot Plots: Model-based Structure Enhancement for Dense Scatter Plots(The Eurographics Association and John Wiley & Sons Ltd., 2020) Trautner, Thomas; Bolte, Fabian; Stoppel, Sergej; Bruckner, Stefan; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaScatter plots are a powerful and well-established technique for visualizing the relationships between two variables as a collection of discrete points. However, especially when dealing with large and dense data, scatter plots often exhibit problems such as overplotting, making the data interpretation arduous. Density plots are able to overcome these limitations in highly populated regions, but fail to provide accurate information of individual data points. This is particularly problematic in sparse regions where the density estimate may not provide a good representation of the underlying data. In this paper, we present sunspot plots, a visualization technique that communicates dense data as a continuous data distribution, while preserving the discrete nature of data samples in sparsely populated areas. We furthermore demonstrate the advantages of our approach on typical failure cases of scatter plots within synthetic and real-world data sets and validate its effectiveness in a user study.Item Co-creating Visualizations: A First Evaluation with Social Science Researchers(The Eurographics Association and John Wiley & Sons Ltd., 2020) Molina León, Gabriela; Breiter, Andreas; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaCo-creation is a design method where designers and domain experts work together to develop a product. In this paper, we present and evaluate the use of co-creation to design a visual information system with social science researchers in order to explore and analyze their data. Co-creation proposes involving the future users in the design process to ensure that they play a critical role in the design, and to increase the chances of long-term adoption. We evaluated the co-creation process through surveys, interviews and a user study. According to the participants' feedback, they felt listened to through co-creation, and considered the methodology helpful to develop visualizations that support their research in the near future. However, participation was far from perfect, particularly early career researchers showed limited interest in participating because they did not see the process as beneficial for their research publication goals. We summarize benefits and limitations of co-creation, together with our recommendations, as lessons learned.Item SEEVis: A Smart Emergency Evacuation Plan Visualization System with Data-Driven Shot Designs(The Eurographics Association and John Wiley & Sons Ltd., 2020) Li, Quan; Liu, Yingjie J.; Chen, Li; Yang, Xingchao C.; Peng, Yi; Yuan, Xiaoru R.; Wijerathne, Maddegedara Lalith Lakshman; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaDespite the significance of tracking human mobility dynamics in a large-scale earthquake evacuation for an effective first response and disaster relief, the general understanding of evacuation behaviors remains limited. Numerous individual movement trajectories, disaster damages of civil engineering, associated heterogeneous data attributes, as well as complex urban environment all obscure disaster evacuation analysis. Although visualization methods have demonstrated promising performance in emergency evacuation analysis, they cannot effectively identify and deliver the major features like speed or density, as well as the resulting evacuation events like congestion or turn-back. In this study, we propose a shot design approach to generate customized and narrative animations to track different evacuation features with different exploration purposes of users. Particularly, an intuitive scene feature graph that identifies the most dominating evacuation events is first constructed based on user-specific regions or their tracking purposes on a certain feature. An optimal camera route, i.e., a storyboard is then calculated based on the previous user-specific regions or features. For different evacuation events along this route, we employ the corresponding shot design to reveal the underlying feature evolution and its correlation with the environment. Several case studies confirm the efficacy of our system. The feedback from experts and users with different backgrounds suggests that our approach indeed helps them better embrace a comprehensive understanding of the earthquake evacuation.Item Many At Once: Capturing Intentions to Create And Use Many Views At Once In Large Display Environments(The Eurographics Association and John Wiley & Sons Ltd., 2020) Aurisano, Jillian; Kumar, Abhinav; Alsaiari, Abeer; Eugenio, Barbara Di; Johnson, Andrew E.; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaThis paper describes results from an observational, exploratory study of visual data exploration in a large, multi-view, flexible canvas environment. Participants were provided with a set of data exploration sub-tasks associated with a local crime dataset and were instructed to pose questions to a remote mediator who would respond by generating and organizing visualizations on the large display. We observed that participants frequently posed requests to cast a net around one or several subsets of the data or a set of data attributes. They accomplished this directly and by utilizing existing views in unique ways, including by requesting to copy and pivot a group of views collectively and posing a set of parallel requests on target views expressed in one command. These observed actions depart from multi-view flexible canvas environments that typically provide interfaces in support of generating one view at a time or actions that operate on one view at a time. We describe how participants used these 'cast-a-net' requests for tasks that spanned more than one view and describe design considerations for multi-view environments that would support the observed multi-view generation actions.Item Fuzzy Contour Trees: Alignment and Joint Layout of Multiple Contour Trees(The Eurographics Association and John Wiley & Sons Ltd., 2020) Lohfink, Anna-Pia; Wetzels, Florian; Lukasczyk, Jonas; Weber, Gunther H.; Garth, Christoph; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaWe describe a novel technique for the simultaneous visualization of multiple scalar fields, e.g. representing the members of an ensemble, based on their contour trees. Using tree alignments, a graph-theoretic concept similar to edit distance mappings, we identify commonalities across multiple contour trees and leverage these to obtain a layout that can represent all trees simultaneously in an easy-to-interpret, minimally-cluttered manner. We describe a heuristic algorithm to compute tree alignments for a given similarity metric, and give an algorithm to compute a joint layout of the resulting aligned contour trees. We apply our approach to the visualization of scalar field ensembles, discuss basic visualization and interaction possibilities, and demonstrate results on several analytic and real-world examples.Item MotionGlyphs: Visual Abstraction of Spatio-Temporal Networks in Collective Animal Behavior(The Eurographics Association and John Wiley & Sons Ltd., 2020) Cakmak, Eren; Schäfer, Hanna; Buchmüller, Juri; Fuchs, Johannes; Schreck, Tobias; Jordan, Alex; Keim, Daniel A.; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaDomain experts for collective animal behavior analyze relationships between single animal movers and groups of animals over time and space to detect emergent group properties. A common way to interpret this type of data is to visualize it as a spatio-temporal network. Collective behavior data sets are often large, and may hence result in dense and highly connected node-link diagrams, resulting in issues of node-overlap and edge clutter. In this design study, in an iterative design process, we developed glyphs as a design for seamlessly encoding relationships and movement characteristics of a single mover or clusters of movers. Based on these glyph designs, we developed a visual exploration prototype, MotionGlyphs, that supports domain experts in interactively filtering, clustering, and animating spatio-temporal networks for collective animal behavior analysis. By means of an expert evaluation, we show how MotionGlyphs supports important tasks and analysis goals of our domain experts, and we give evidence of the usefulness for analyzing spatio-temporal networks of collective animal behavior.Item Orchard: Exploring Multivariate Heterogeneous Networks on Mobile Phones(The Eurographics Association and John Wiley & Sons Ltd., 2020) Eichmann, Philipp; Edge, Darren; Evans, Nathan; Lee, Bongshin; Brehmer, Matthew; White, Christopher; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaPeople are becoming increasingly sophisticated in their ability to navigate information spaces using search, hyperlinks, and visualization. But, mobile phones preclude the use of multiple coordinated views that have proven effective in the desktop environment (e.g., for business intelligence or visual analytics). In this work, we propose to model information as multivariate heterogeneous networks to enable greater analytic expression for a range of sensemaking tasks while suggesting a new, list-based paradigm with gestural navigation of structured information spaces on mobile phones. We also present a mobile application, called Orchard, which combines ideas from both faceted search and interactive network exploration in a visual query language to allow users to collect facets of interest during exploratory navigation. Our study showed that users could collect and combine these facets with Orchard, specifying network queries and projections that would only have been possible previously using complex data tools or custom data science.Item Sublinear Time Force Computation for Big Complex Network Visualization(The Eurographics Association and John Wiley & Sons Ltd., 2020) Meidiana, Amyra; Hong, Seok-Hee; Torkel, Marnijati; Cai, Shijun; Eades, Peter; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaIn this paper, we present a new framework for sublinear time force computation for visualization of big complex graphs. Our algorithm is based on the sampling of vertices for computing repulsion forces and edge sparsification for attraction force computation. More specifically, for vertex sampling, we present three types of sampling algorithms, including random sampling, geometric sampling, and combinatorial sampling, to reduce the repulsion force computation to sublinear in the number of vertices. We utilize a spectral sparsification approach to reduce the number of attraction force computations to sublinear in the number of edges for dense graphs. We also present a smart initialization method based on radial tree drawing of the BFS spanning tree rooted at the center. Experiments show that our new sublinear time force computation algorithms run quite fast, while producing good visualization of large and complex networks, with significant improvements in quality metrics such as shape-based and edge crossing metrics.Item VisuaLint: Sketchy In Situ Annotations of Chart Construction Errors(The Eurographics Association and John Wiley & Sons Ltd., 2020) Hopkins, Aspen K.; Correll, Michael; Satyanarayan, Arvind; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaChart construction errors, such as truncated axes or inexpressive visual encodings, can hinder reading a visualization, or worse, imply misleading facts about the underlying data. These errors can be caught by critical readings of visualizations, but readers must have a high level of data and design literacy and must be paying close attention. To address this issue, we introduce VisuaLint: a technique for surfacing chart construction errors in situ. Inspired by the ubiquitous red wavy underline that indicates spelling mistakes, visualization elements that contain errors (e.g., axes and legends) are sketchily rendered and accompanied by a concise annotation. VisuaLint is unobtrusive-it does not interfere with reading a visualization-and its direct display establishes a close mapping between erroneous elements and the expression of error. We demonstrate five examples of VisualLint and present the results of a crowdsourced evaluation (N = 62) of its efficacy. These results contribute an empirical baseline proficiency for recognizing chart construction errors, and indicate near-universal difficulty in error identification. We find that people more reliably identify chart construction errors after being shown examples of VisuaLint, and prefer more verbose explanations for unfamiliar or less obvious flaws.Item Feature Driven Combination of Animated Vector Field Visualizations(The Eurographics Association and John Wiley & Sons Ltd., 2020) Lobo, María Jesús; Telea, Alexandru; Hurter, Christophe; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaAnimated visualizations are one of the methods for finding and understanding complex structures of time-dependent vector fields. Many visualization designs can be used to this end, such as streamlines, vector glyphs, and image-based techniques. While all such designs can depict any vector field, their effectiveness in highlighting particular field aspects has not been fully explored. To fill this gap, we compare three animated vector field visualization techniques, OLIC, IBFV, and particles, for a critical point detection-and-classification task through a user study. Our results show that the effectiveness of the studied techniques depends on the nature of the critical points. We use these results to design a new flow visualization technique that combines all studied techniques in a single view by locally using the most effective technique for the patterns present in the flow data at that location. A second user study shows that our technique is more efficient and less error prone than the three other techniques used individually for the critical point detection task.Item v-plots: Designing Hybrid Charts for the Comparative Analysis of Data Distributions(The Eurographics Association and John Wiley & Sons Ltd., 2020) Blumenschein, Michael; Debbeler, Luka J.; Lages, Nadine C.; Renner, Britta; Keim, Daniel A.; El-Assady, Mennatallah; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaComparing data distributions is a core focus in descriptive statistics, and part of most data analysis processes across disciplines. In particular, comparing distributions entails numerous tasks, ranging from identifying global distribution properties, comparing aggregated statistics (e.g., mean values), to the local inspection of single cases. While various specialized visualizations have been proposed (e.g., box plots, histograms, or violin plots), they are not usually designed to support more than a few tasks, unless they are combined. In this paper, we present the v-plot designer; a technique for authoring custom hybrid charts, combining mirrored bar charts, difference encodings, and violin-style plots. v-plots are customizable and enable the simultaneous comparison of data distributions on global, local, and aggregation levels. Our system design is grounded in an expert survey that compares and evaluates 20 common visualization techniques to derive guidelines for the task-driven selection of appropriate visualizations. This knowledge externalization step allowed us to develop a guiding wizard that can tailor v-plots to individual tasks and particular distribution properties. Finally, we confirm the usefulness of our system design and the userguiding process by measuring the fitness for purpose and applicability in a second study with four domain and statistic experts.Item Augmenting Node-Link Diagrams with Topographic Attribute Maps(The Eurographics Association and John Wiley & Sons Ltd., 2020) Preiner, Reinhold; Schmidt, Johanna; Krösl, Katharina; Schreck, Tobias; Mistelbauer, Gabriel; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaWe propose a novel visualization technique for graphs that are attributed with scalar data. In many scenarios, these attributes (e.g., birth date in a family network) provide ambient context information for the graph structure, whose consideration is important for different visual graph analysis tasks. Graph attributes are usually conveyed using different visual representations (e.g., color, size, shape) or by reordering the graph structure according to the attribute domain (e.g., timelines). While visual encodings allow graphs to be arranged in a readable layout, assessing contextual information such as the relative similarities of attributes across the graph is often cumbersome. In contrast, attribute-based graph reordering serves the comparison task of attributes, but typically strongly impairs the readability of the structural information given by the graph's topology. In this work, we augment force-directed node-link diagrams with a continuous ambient representation of the attribute context. This way, we provide a consistent overview of the graph's topological structure as well as its attributes, supporting a wide range of graph-related analysis tasks. We resort to an intuitive height field metaphor, illustrated by a topographic map rendering using contour lines and suitable color maps. Contour lines visually connect nodes of similar attribute values, and depict their relative arrangement within the global context. Moreover, our contextual representation supports visualizing attribute value ranges associated with graph nodes (e.g., lifespans in a family network) as trajectories routed through this height field. We discuss how user interaction with both the structural and the contextual information fosters exploratory graph analysis tasks. The effectiveness and versatility of our technique is confirmed in a user study and case studies from various application domains.Item CPU Ray Tracing of Tree-Based Adaptive Mesh Refinement Data(The Eurographics Association and John Wiley & Sons Ltd., 2020) Wang, Feng; Marshak, Nathan; Usher, Will; Burstedde, Carsten; Knoll, Aaron; Heister, Timo; Johnson, Chris R.; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaAdaptive mesh refinement (AMR) techniques allow for representing a simulation's computation domain in an adaptive fashion. Although these techniques have found widespread adoption in high-performance computing simulations, visualizing their data output interactively and without cracks or artifacts remains challenging. In this paper, we present an efficient solution for direct volume rendering and hybrid implicit isosurface ray tracing of tree-based AMR (TB-AMR) data. We propose a novel reconstruction strategy, Generalized Trilinear Interpolation (GTI), to interpolate across AMR level boundaries without cracks or discontinuities in the surface normal. We employ a general sparse octree structure supporting a wide range of AMR data, and use it to accelerate volume rendering, hybrid implicit isosurface rendering and value queries. We demonstrate that our approach achieves artifact-free isosurface and volume rendering and provides higher quality output images compared to existing methods at interactive rendering rates.Item SeqDynamics: Visual Analytics for Evaluating Online Problem-solving Dynamics(The Eurographics Association and John Wiley & Sons Ltd., 2020) Xia, Meng; Xu, Min; Lin, Chuan-en; Cheng, Ta Ying; Qu, Huamin; Ma, Xiaojuan; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaProblem-solving dynamics refers to the process of solving a series of problems over time, from which a student's cognitive skills and non-cognitive traits and behaviors can be inferred. For example, we can derive a student's learning curve (an indicator of cognitive skill) from the changes in the difficulty level of problems solved, or derive a student's self-regulation patterns (an example of non-cognitive traits and behaviors) based on the problem-solving frequency over time. Few studies provide an integrated overview of both aspects by unfolding the problem-solving process. In this paper, we present a visual analytics system named SeqDynamics that evaluates students' problem-solving dynamics from both cognitive and non-cognitive perspectives. The system visualizes the chronological sequence of learners' problem-solving behavior through a set of novel visual designs and coordinated contextual views, enabling users to compare and evaluate problem-solving dynamics on multiple scales. We present three scenarios to demonstrate the usefulness of SeqDynamics on a real-world dataset which consists of thousands of problem-solving traces. We also conduct five expert interviews to show that SeqDynamics enhances domain experts' understanding of learning behavior sequences and assists them in completing evaluation tasks efficiently.Item Ocupado: Visualizing Location-Based Counts Over Time Across Buildings(The Eurographics Association and John Wiley & Sons Ltd., 2020) Oppermann, Michael; Munzner, Tamara; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaUnderstanding how spaces in buildings are being used is vital for optimizing space utilization, for improving resource allocation, and for the design of new facilities. We present a multi-year design study that resulted in Ocupado, a set of visual decision-support tools centered around occupancy data for stakeholders in facilities management and planning. Ocupado uses WiFi devices as a proxy for human presence, capturing location-based counts that preserve privacy without trajectories. We contribute data and task abstractions for studying space utilization for combinations of data granularities in both space and time. In addition, we contribute generalizable design choices for visualizing location-based counts relating to indoor environments. We provide evidence of Ocupado's utility through multiple analysis scenarios with real-world data refined through extensive stakeholder feedback, and discussion of its take-up by our industry partner.Item Understanding the Design Space and Authoring Paradigms for Animated Data Graphics(The Eurographics Association and John Wiley & Sons Ltd., 2020) Thompson, John R.; Liu, Zhicheng; Li, Wilmot; Stasko, John; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaCreating expressive animated data graphics often requires designers to possess highly specialized programming skills. Alternatively, the use of direct manipulation tools is popular among animation designers, but these tools have limited support for generating graphics driven by data. Our goal is to inform the design of next-generation animated data graphic authoring tools. To understand the composition of animated data graphics, we survey real-world examples and contribute a description of the design space. We characterize animated transitions based on object, graphic, data, and timing dimensions. We synthesize the primitives from the object, graphic, and data dimensions as a set of 10 transition types, and describe how timing primitives compose broader pacing techniques. We then conduct an ideation study that uncovers how people approach animation creation with three authoring paradigms: keyframe animation, procedural animation, and presets & templates. Our analysis shows that designers have an overall preference for keyframe animation. However, we find evidence that an authoring tool should combine these three paradigms as designers' preferences depend on the characteristics of the animated transition design and the authoring task. Based on these findings, we contribute guidelines and design considerations for developing future animated data graphic authoring tools.Item Fiber Surfaces for many Variables(The Eurographics Association and John Wiley & Sons Ltd., 2020) Blecha, Christian; Raith, Felix; Präger, Arne Jonas; Nagel, Thomas; Kolditz, Olaf; Maßmann, Jobst; Röber, Niklas; Böttinger, Michael; Scheuermann, Gerik; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaScientific visualization deals with increasingly complex data consisting of multiple fields. Typical disciplines generating multivariate data are fluid dynamics, structural mechanics, geology, bioengineering, and climate research. Quite often, scientists are interested in the relation between some of these variables. A popular visualization technique for a single scalar field is the extraction and rendering of isosurfaces. With this technique, the domain can be split into two parts, i.e. a volume with higher values and one with lower values than the selected isovalue. Fiber surfaces generalize this concept to two or three scalar variables up to now. This article extends the notion further to potentially any finite number of scalar fields. We generalize the fiber surface extraction algorithm of Raith et al. [RBN*19] from 3 to d dimensions and demonstrate the technique using two examples from geology and climate research. The first application concerns a generic model of a nuclear waste repository and the second one an atmospheric simulation over central Europe. Both require complex simulations which involve multiple physical processes. In both cases, the new extended fiber surfaces helps us finding regions of interest like the nuclear waste repository or the power supply of a storm due to their characteristic properties.Item Canis: A High-Level Language for Data-Driven Chart Animations(The Eurographics Association and John Wiley & Sons Ltd., 2020) Ge, Tong; Zhao, Yue; Lee, Bongshin; Ren, Donghao; Chen, Baoquan; Wang, Yunhai; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaIn this paper, we introduce Canis, a high-level domain-specific language that enables declarative specifications of data-driven chart animations. By leveraging data-enriched SVG charts, its grammar of animations can be applied to the charts created by existing chart construction tools. With Canis, designers can select marks from the charts, partition the selected marks into mark units based on data attributes, and apply animation effects to the mark units, with the control of when the effects start. The Canis compiler automatically synthesizes the Lottie animation JSON files [Aira], which can be rendered natively across multiple platforms. To demonstrate Canis' expressiveness, we present a wide range of chart animations. We also evaluate its scalability by showing the effectiveness of our compiler in reducing the output specification size and comparing its performance on different platforms against D3.
- «
- 1 (current)
- 2
- 3
- »