Volume 38 (2019)
Permanent URI for this community
Browse
Browsing Volume 38 (2019) by Issue Date
Now showing 1 - 20 of 267
Results Per Page
Sort Options
Item Discrete Calabi Flow: A Unified Conformal Parameterization Method(The Eurographics Association and John Wiley & Sons Ltd., 2019) Su, Kehua; Li, Chenchen; Zhou, Yuming; Xu, Xu; Gu, Xianfeng; Lee, Jehee and Theobalt, Christian and Wetzstein, GordonConformal parameterization for surfaces into various parameter domains is a fundamental task in computer graphics. Prior research on discrete Ricci flow provided us with promising inspirations from methods derived via Riemannian geometry, which is rigorous in theory and effective in practice. In this paper, we propose a unified conformal parameterization approach for turning triangle meshes into planar and spherical domains using discrete Calabi flow on piecewise linear metric. We incorporate edgeflipping surgery to guarantee convergence as well as other significant improvements including approximate Newton's method, optimal step-lengths, priority embedding and boundary customizing, which achieve better performance and functionality with robustness and accuracy.Item Analytic Spectral Integration of Birefringence-Induced Iridescence(The Eurographics Association and John Wiley & Sons Ltd., 2019) Steinberg, Shlomi; Boubekeur, Tamy and Sen, PradeepOptical phenomena that are only observable in optically anisotropic materials are generally ignored in the computer graphics. However, such optical effects are not restricted to exotic materials and can also be observed with common translucent objects when optical anisotropy is induced, e.g. via mechanical stress. Furthermore accurate prediction and reproduction of those optical effects has important practical applications. We provide a short but complete analysis of the relevant electromagnetic theory of light propagation in optically anisotropic media and derive the full set of formulations required to render birefringent materials. We then present a novel method for spectral integration of refraction and reflection in an anisotropic slab. Our approach allows fast and robust rendering of birefringence-induced iridescence in a physically faithful manner and is applicable to both real-time and offline rendering.Item A PatchMatch-based Approach for Matte Propagation in Videos(The Eurographics Association and John Wiley & Sons Ltd., 2019) Backes, Marcos; Menezes de Oliveira Neto, Manuel; Lee, Jehee and Theobalt, Christian and Wetzstein, GordonDespite considerable advances in natural image matting over the last decades, video matting still remains a difficult problem. The main challenges faced by existing methods are the large amount of user input required, and temporal inconsistencies in mattes between pairs of adjacent frames. We present a temporally-coherent matte-propagation method for videos based on PatchMatch and edge-aware filtering. Given an input video and trimaps for a few frames, including the first and last, our approach generates alpha mattes for all frames of the video sequence. We also present a user scribble-based interface for video matting that takes advantage of the efficiency of our method to interactively refine the matte results. We demonstrate the effectiveness of our approach by using it to generate temporally-coherent mattes for several natural video sequences. We perform quantitative comparisons against the state-of-the-art sparse-input video matting techniques and show that our method produces significantly better results according to three different metrics. We also perform qualitative comparisons against the state-of-the-art dense-input video matting techniques and show that our approach produces similar quality results while requiring only about 7% of the amount of user input required by such techniques. These results show that our method is both effective and user-friendly, outperforming state-of-the-art solutions.Item Robust Structure‐Based Shape Correspondence(© 2019 The Eurographics Association and John Wiley & Sons Ltd., 2019) Kleiman, Yanir; Ovsjanikov, Maks; Chen, Min and Benes, BedrichWe present a robust method to find region‐level correspondences between shapes, which are invariant to changes in geometry and applicable across multiple shape representations. We generate simplified shape graphs by jointly decomposing the shapes, and devise an adapted graph‐matching technique, from which we infer correspondences between shape regions. The simplified shape graphs are designed to primarily capture the overall structure of the shapes, without reflecting precise information about the geometry of each region, which enables us to find correspondences between shapes that might have significant geometric differences. Moreover, due to the special care we take to ensure the robustness of each part of our pipeline, our method can find correspondences between shapes with different representations, such as triangular meshes and point clouds. We demonstrate that the region‐wise matching that we obtain can be used to find correspondences between feature points, reveal the intrinsic self‐similarities of each shape and even construct point‐to‐point maps across shapes. Our method is both time and space efficient, leading to a pipeline that is significantly faster than comparable approaches. We demonstrate the performance of our approach through an extensive quantitative and qualitative evaluation on several benchmarks where we achieve comparable or superior performance to existing methods.We present a robust method to find region‐level correspondences between shapes, which are invariant to changes in geometry and applicable across multiple shape representations. We generate simplified shape graphs by jointly decomposing the shapes, and devise an adapted graph‐matching technique, from which we infer correspondences between shape regions. The simplified shape graphs are designed to primarily capture the overall structure of the shapes, without reflecting precise information about the geometry of each region, which enables us to find correspondences between shapes that might have significant geometric differences. Moreover, due to the special care we take to ensure the robustness of each part of our pipeline, our method can find correspondences between shapes with different representations, such as triangular meshes and point clouds.Item Procedural Riverscapes(The Eurographics Association and John Wiley & Sons Ltd., 2019) Peytavie, Adrien; Dupont, Thibault; Guérin, Eric; Cortial, Yann; Benes, Bedrich; Gain, James; Galin, Eric; Lee, Jehee and Theobalt, Christian and Wetzstein, GordonThis paper addresses the problem of creating animated riverscapes through a novel procedural framework that generates the inscribing geometry of a river network and then synthesizes matching real-time water movement animation. Our approach takes bare-earth heightfields as input, derives hydrologically-inspired river network trajectories, carves riverbeds into the terrain, and then automatically generates a corresponding blend-flow tree for the water surface. Characteristics, such as the riverbed width, depth and shape, as well as elevation and flow of the fluid surface, are procedurally derived from the terrain and river type. The riverbed is inscribed by combining compactly supported elevation modifiers over the river course. Subsequently, the water surface is defined as a time-varying continuous function encoded as a blend-flow tree with leaves that are parameterized procedural flow primitives and internal nodes that are blend operators. While river generation is fully automated, we also incorporate intuitive interactive editing of both river trajectories and individual riverbed and flow primitives. The resulting framework enables the generation of a wide range of river forms, ranging from slow meandering rivers to rapids with churning water, including surface effects, such as foam and leaves carried downstream.Item Incremental Labelling of Voronoi Vertices for Shape Reconstruction(© 2019 The Eurographics Association and John Wiley & Sons Ltd., 2019) Peethambaran, J.; Parakkat, A.D.; Tagliasacchi, A.; Wang, R.; Muthuganapathy, R.; Chen, Min and Benes, BedrichWe present an incremental Voronoi vertex labelling algorithm for approximating contours, medial axes and dominant points (high curvature points) from 2D point sets. Though there exist many number of algorithms for reconstructing curves, medial axes or dominant points, a unified framework capable of approximating all the three in one place from points is missing in the literature. Our algorithm estimates the normals at each sample point through poles (farthest Voronoi vertices of a sample point) and uses the estimated normals and the corresponding tangents to determine the spatial locations (inner or outer) of the Voronoi vertices with respect to the original curve. The vertex classification helps to construct a piece‐wise linear approximation to the object boundary. We provide a theoretical analysis of the algorithm for points non‐uniformly (ε‐sampling) sampled from simple, closed, concave and smooth curves. The proposed framework has been thoroughly evaluated for its usefulness using various test data. Results indicate that even sparsely and non‐uniformly sampled curves with outliers or collection of curves are faithfully reconstructed by the proposed algorithm.We present an incremental Voronoi vertex labelling algorithm for approximating contours, medial axes and dominant points (high curvature points) from 2D point sets. Though there exist many number of algorithms for reconstructing curves, medial axes or dominant points, a unified framework capable of approximating all the three in one place from points is missing in the literature. Our algorithm estimates the normals at each sample point through poles (farthest Voronoi vertices of a sample point) and uses the estimated normals and the corresponding tangents to determine the spatial locations (inner or outer) of the Voronoi vertices with respect to the original curve. The vertex classification helps to construct a piece‐wise linear approximation to the object boundary. We provide a theoretical analysis of the algorithm for points non‐uniformly (ε‐sampling) sampled from simple, closed, concave and smooth curves.Item Position-Based Simulation of Elastic Models on the GPU with Energy Aware Gauss-Seidel Algorithm(The Eurographics Association and John Wiley & Sons Ltd., 2019) Cetinaslan, Ozan; Steinberger, Markus and Foley, TimIn this paper, we provide a smooth extension of the energy aware Gauss-Seidel iteration to the Position-Based Dynamics (PBD) method. This extension is inspired by the kinetic and potential energy changes equalization and uses the foundations of the recent extended version of PBD algorithm (XPBD). The proposed method is not meant to conserve the total energy of the system and modifies each position constraint based on the equality of the kinetic and potential energy changes within the Gauss-Seidel process of the XPBD algorithm. Our extension provides an implicit solution for relatively better stiffness during the simulation of elastic objects. We apply our solution directly within each Gauss-Seidel iteration and it is independent of both simulation step-size and integration methods. To demonstrate the benefits of our proposed extension with higher frame rates, we develop an efficient and practical mesh coloring algorithm for the XPBD method which provides parallel processing on a GPU. During the initialization phase, all mesh primitives are grouped according to their connectivity. Afterwards, all these groups are computed simultaneously on a GPU during the simulation phase. We demonstrate the benefits of our method with many spring potential and strain-based continuous material constraints. Our proposed algorithm is easy to implement and seamlessly fits into the existing position-based frameworks.Item Dual Illumination Estimation for Robust Exposure Correction(The Eurographics Association and John Wiley & Sons Ltd., 2019) Zhang, Qing; Nie, Yongwei; Zheng, Wei-Shi; Lee, Jehee and Theobalt, Christian and Wetzstein, GordonExposure correction is one of the fundamental tasks in image processing and computational photography. While various methods have been proposed, they either fail to produce visually pleasing results, or only work well for limited types of image (e.g., underexposed images). In this paper, we present a novel automatic exposure correction method, which is able to robustly produce high-quality results for images of various exposure conditions (e.g., underexposed, overexposed, and partially under- and over-exposed). At the core of our approach is the proposed dual illumination estimation, where we separately cast the underand over-exposure correction as trivial illumination estimation of the input image and the inverted input image. By performing dual illumination estimation, we obtain two intermediate exposure correction results for the input image, with one fixes the underexposed regions and the other one restores the overexposed regions. A multi-exposure image fusion technique is then employed to adaptively blend the visually best exposed parts in the two intermediate exposure correction images and the input image into a globally well-exposed image. Experiments on a number of challenging images demonstrate the effectiveness of the proposed approach and its superiority over the state-of-the-art methods and popular automatic exposure correction tools.Item A Variational Approach to Registration with Local Exponential Coordinates(© 2019 The Eurographics Association and John Wiley & Sons Ltd., 2019) Paman, Ashish; Rangarajan, Ramsharan; Chen, Min and Benes, BedrichWe identify a novel parameterization for the group of finite rotations (SO), consisting of an atlas of exponential maps defined over local tangent planes, for the purpose of computing isometric transformations in registration problems that arise in machine vision applications. Together with a simple representation for translations, the resulting system of coordinates for rigid body motions is proper, free from singularities, is unrestricted in the magnitude of motions that can be represented and poses no difficulties in computer implementations despite their multi‐chart nature. Crucially, such a parameterization helps to admit varied types of data sets, to adopt data‐dependent error functionals for registration, seamlessly bridges correspondence and pose calculations, and inspires systematic variational procedures for computing optimal solutions. As a representative problem, we consider that of registering point clouds onto implicit surfaces without introducing any discretization of the latter. We derive coordinate‐free stationarity conditions, compute consistent linearizations, provide algorithms to compute optimal solutions and examine their performance with detailed examples. The algorithm generalizes naturally to registering curves and surfaces onto implicit manifolds, is directly adaptable to handle the familiar problem of pairwise registration of point clouds and allows for incorporating scale factors during registration.We identify a novel parameterization for the group of finite rotations (SO), consisting of an atlas of exponential maps defined over local tangent planes, for the purpose of computing isometric transformations in registration problems that arise in machine vision applications. Together with a simple representation for translations, the resulting system of coordinates for rigid body motions is proper, free from singularities, is unrestricted in the magnitude of motions that can be represented and poses no difficulties in computer implementations despite their multi‐chart nature. Crucially, such a parameterization helps to admit varied types of data sets, to adopt data‐dependent error functionals for registration, seamlessly bridges correspondence and pose calculations, and inspires systematic variational procedures for computing optimal solutions. As a representative problem, we consider that of registering point clouds onto implicit surfaces without introducing any discretization of the latter. We derive coordinate‐free stationarity conditions, compute consistent linearizations, provide algorithms to compute optimal solutions and examine their performance with detailed examples. The algorithm generalizes naturally to registering curves and surfaces onto implicit manifolds, is directly adaptable to handle the familiar problem of pairwise registration of point clouds and allows for incorporating scale factors during registration.Item Visual-Interactive Preprocessing of Multivariate Time Series Data(The Eurographics Association and John Wiley & Sons Ltd., 2019) Bernard, Jürgen; Hutter, Marco; Reinemuth, Heiko; Pfeifer, Hendrik; Bors, Christian; Kohlhammer, Jörn; Gleicher, Michael and Viola, Ivan and Leitte, HeikePre-processing is a prerequisite to conduct effective and efficient downstream data analysis. Pre-processing pipelines often require multiple routines to address data quality challenges and to bring the data into a usable form. For both the construction and the refinement of pre-processing pipelines, human-in-the-loop approaches are highly beneficial. This particularly applies to multivariate time series, a complex data type with multiple values developing over time. Due to the high specificity of this domain, it has not been subject to in-depth research in visual analytics. We present a visual-interactive approach for preprocessing multivariate time series data with the following aspects. Our approach supports analysts to carry out six core analysis tasks related to pre-processing of multivariate time series. To support these tasks, we identify requirements to baseline toolkits that may help practitioners in their choice. We characterize the space of visualization designs for uncertainty-aware pre-processing and justify our decisions. Two usage scenarios demonstrate applicability of our approach, design choices, and uncertainty visualizations for the six analysis tasks. This work is one step towards strengthening the visual analytics support for data pre-processing in general and for uncertainty-aware pre-processing of multivariate time series in particular.Item High Dynamic Range Point Clouds for Real-Time Relighting(The Eurographics Association and John Wiley & Sons Ltd., 2019) Sabbadin, Manuele; Palma, Gianpaolo; BANTERLE, FRANCESCO; Boubekeur, Tamy; Cignoni, Paolo; Lee, Jehee and Theobalt, Christian and Wetzstein, GordonAcquired 3D point clouds make possible quick modeling of virtual scenes from the real world.With modern 3D capture pipelines, each point sample often comes with additional attributes such as normal vector and color response. Although rendering and processing such data has been extensively studied, little attention has been devoted using the light transport hidden in the recorded per-sample color response to relight virtual objects in visual effects (VFX) look-dev or augmented reality (AR) scenarios. Typically, standard relighting environment exploits global environment maps together with a collection of local light probes to reflect the light mood of the real scene on the virtual object. We propose instead a unified spatial approximation of the radiance and visibility relationships present in the scene, in the form of a colored point cloud. To do so, our method relies on two core components: High Dynamic Range (HDR) expansion and real-time Point-Based Global Illumination (PBGI). First, since an acquired color point cloud typically comes in Low Dynamic Range (LDR) format, we boost it using a single HDR photo exemplar of the captured scene that can cover part of it. We perform this expansion efficiently by first expanding the dynamic range of a set of renderings of the point cloud and then projecting these renderings on the original cloud. At this stage, we propagate the expansion to the regions not covered by the renderings or with low-quality dynamic range by solving a Poisson system. Then, at rendering time, we use the resulting HDR point cloud to relight virtual objects, providing a diffuse model of the indirect illumination propagated by the environment. To do so, we design a PBGI algorithm that exploits the GPU's geometry shader stage as well as a new mipmapping operator, tailored for G-buffers, to achieve real-time performances. As a result, our method can effectively relight virtual objects exhibiting diffuse and glossy physically-based materials in real time. Furthermore, it accounts for the spatial embedding of the object within the 3D environment. We evaluate our approach on manufactured scenes to assess the error introduced at every step from the perfect ground truth. We also report experiments with real captured data, covering a range of capture technologies, from active scanning to multiview stereo reconstruction.Item Learning to Trace: Expressive Line Drawing Generation from Photographs(The Eurographics Association and John Wiley & Sons Ltd., 2019) Inoue, Naoto; Ito, Daichi; Xu, Ning; Yang, Jimei; Price, Brian; Yamasaki, Toshihiko; Lee, Jehee and Theobalt, Christian and Wetzstein, GordonIn this paper, we present a new computational method for automatically tracing high-resolution photographs to create expressive line drawings. We define expressive lines as those that convey important edges, shape contours, and large-scale texture lines that are necessary to accurately depict the overall structure of objects (similar to those found in technical drawings) while still being sparse and artistically pleasing. Given a photograph, our algorithm extracts expressive edges and creates a clean line drawing using a convolutional neural network (CNN). We employ an end-to-end trainable fully-convolutional CNN to learn the model in a data-driven manner. The model consists of two networks to cope with two sub-tasks; extracting coarse lines and refining them to be more clean and expressive. To build a model that is optimal for each domain, we construct two new datasets for face/body and manga background. The experimental results qualitatively and quantitatively demonstrate the effectiveness of our model. We further illustrate two practical applications.Item Deep Fluids: A Generative Network for Parameterized Fluid Simulations(The Eurographics Association and John Wiley & Sons Ltd., 2019) Kim, Byungsoo; Azevedo, Vinicius C.; Thuerey, Nils; Kim, Theodore; Gross, Markus; Solenthaler, Barbara; Alliez, Pierre and Pellacini, FabioThis paper presents a novel generative model to synthesize fluid simulations from a set of reduced parameters. A convolutional neural network is trained on a collection of discrete, parameterizable fluid simulation velocity fields. Due to the capability of deep learning architectures to learn representative features of the data, our generative model is able to accurately approximate the training data set, while providing plausible interpolated in-betweens. The proposed generative model is optimized for fluids by a novel loss function that guarantees divergence-free velocity fields at all times. In addition, we demonstrate that we can handle complex parameterizations in reduced spaces, and advance simulations in time by integrating in the latent space with a second network. Our method models a wide variety of fluid behaviors, thus enabling applications such as fast construction of simulations, interpolation of fluids with different parameters, time re-sampling, latent space simulations, and compression of fluid simulation data. Reconstructed velocity fields are generated up to 700x faster than re-simulating the data with the underlying CPU solver, while achieving compression rates of up to 1300x.Item Rain Wiper: An Incremental RandomlyWired Network for Single Image Deraining(The Eurographics Association and John Wiley & Sons Ltd., 2019) Liang, Xiwen; Qiu, Bin; Su, Zhuo; Gao, Chengying; Shi, Xiaohong; Wang, Ruomei; Lee, Jehee and Theobalt, Christian and Wetzstein, GordonSingle image rain removal is a challenging ill-posed problem due to various shapes and densities of rain streaks. We present a novel incremental randomly wired network (IRWN) for single image deraining. Different from previous methods, most structures of modules in IRWN are generated by a stochastic network generator based on the random graph theory, which ease the burden of manual design and further help to characterize more complex rain streaks. To decrease network parameters and extract more details efficiently, the image pyramid is fused via the multi-scale network structure. An incremental rectified loss is proposed to better remove rain streaks in different rain conditions and recover the texture information of target objects. Extensive experiments on synthetic and real-world datasets demonstrate that the proposed method outperforms the state-ofthe- art methods significantly. In addition, an ablation study is conducted to illustrate the improvements obtained by different modules and loss items in IRWN.Item TexNN: Fast Texture Encoding Using Neural Networks(© 2019 The Eurographics Association and John Wiley & Sons Ltd., 2019) Pratapa, S.; Olson, T.; Chalfin, A.; Manocha, D.; Chen, Min and Benes, BedrichWe present a novel deep learning‐based method for fast encoding of textures into current texture compression formats. Our approach uses state‐of‐the‐art neural network methods to compute the appropriate encoding configurations for fast compression. A key bottleneck in the current encoding algorithms is the search step, and we reduce that computation to a classification problem. We use a trained neural network approximation to quickly compute the encoding configuration for a given texture. We have evaluated our approach for compressing the textures for the widely used adaptive scalable texture compression format and evaluate the performance for different block sizes corresponding to 4 × 4, 6 × 6 and 8 × 8. Overall, our method (TexNN) speeds up the encoding computation up to an order of magnitude compared to prior compression algorithms with very little or no loss in the visual quality.We present a novel deep learning‐based method for fast encoding of textures into current texture compression formats. Our approach uses state‐of‐the‐art neural network methods to compute the appropriate encoding configurations for fast compression. A key bottleneck in the current encoding algorithms is the search step, and we reduce that computation to a classification problem. We use a trained neural network approximation to quickly compute the encoding configuration for a given texture.We have evaluated our approach for compressing the textures for the widely used adaptive scalable texture compression format and evaluate the performance for different block sizes corresponding to 4 × 4, 6 × 6 and 8 × 8.Item Privacy Preserving Visualization: A Study on Event Sequence Data(© 2019 The Eurographics Association and John Wiley & Sons Ltd., 2019) Chou, Jia‐Kai; Wang, Yang; Ma, Kwan‐Liu; Chen, Min and Benes, BedrichThe inconceivable ability and common practice to collect personal data as well as the power of data‐driven approaches to businesses, services and security nowadays also introduce significant privacy issues. There have been extensive studies on addressing privacy preserving problems in the data mining community but relatively few have provided supervised control over the anonymization process. Preserving both the value and privacy of the data is largely a non‐trivial task. We present the design and evaluation of a visual interface that assists users in employing commonly used data anonymization techniques for making privacy preserving visualizations. Specifically, we focus on event sequence data due to its vulnerability to privacy concerns. Our interface is designed for data owners to examine potential privacy issues, obfuscate information as suggested by the algorithm and fine‐tune the results per their discretion. Multiple use case scenarios demonstrate the utility of our design. A user study similarly investigates the effectiveness of the privacy preserving strategies. Our results show that using a visual‐based interface is effective for identifying potential privacy issues, for revealing underlying anonymization processes, and for allowing users to balance between data utility and privacy.The inconceivable ability and common practice to collect personal data as well as the power of data‐driven approaches to businesses, services and security nowadays also introduce significant privacy issues. There have been extensive studies on addressing privacy preserving problems in the data mining community but relatively few have provided supervised control over the anonymization process. Preserving both the value and privacy of the data is largely a non‐trivial task. We present the design and evaluation of a visual interface that assists users in employing commonly used data anonymization techniques for making privacy preserving visualizations. Specifically, we focus on event sequence data due to its vulnerability to privacy concerns. Our interface is designed for data owners to examine potential privacy issues, obfuscate information as suggested by the algorithm and fine‐tune the results per their discretion.Item Visual Analysis of Charge Flow Networks for Complex Morphologies(The Eurographics Association and John Wiley & Sons Ltd., 2019) Kottravel, Sathish; Falk, Martin; Bin Masood, Talha; linares, mathieu; Hotz, Ingrid; Gleicher, Michael and Viola, Ivan and Leitte, HeikeIn the field of organic electronics, understanding complex material morphologies and their role in efficient charge transport in solar cells is extremely important. Related processes are studied using the Ising model and Kinetic Monte Carlo simulations resulting in large ensembles of stochastic trajectories. Naive visualization of these trajectories, individually or as a whole, does not lead to new knowledge discovery through exploration. In this paper, we present novel visualization and exploration methods to analyze this complex dynamic data, which provide succinct and meaningful abstractions leading to scientific insights. We propose a morphology abstraction yielding a network composed of material pockets and the interfaces, which serves as backbone for the visualization of the charge diffusion. The trajectory network is created using a novel way of implicitly attracting the trajectories to the skeleton of the morphology relying on a relaxation process. Each individual trajectory is then represented as a connected sequence of nodes in the skeleton. The final network summarizes all of these sequences in a single aggregated network. We apply our method to three different morphologies and demonstrate its suitability for exploring this kind of data.Item A Geometric Optimization Approach for the Detection and Segmentation of Multiple Aneurysms(The Eurographics Association and John Wiley & Sons Ltd., 2019) Lawonn, Kai; Meuschke, Monique; Wickenhöfer, Ralph; Preim, Bernhard; Hildebrandt, Klaus; Gleicher, Michael and Viola, Ivan and Leitte, HeikeWe present a method for detecting and segmenting aneurysms in blood vessels that facilitates the assessment of risks associated with the aneurysms. The detection and analysis of aneurysms is important for medical diagnosis as aneurysms bear the risk of rupture with fatal consequences for the patient. For risk assessment and treatment planning, morphological descriptors, such as the height and width of the aneurysm, are used. Our system enables the fast detection, segmentation and analysis of single and multiple aneurysms. The method proceeds in two stages plus an optional third stage in which the user interacts with the system. First, a set of aneurysm candidate regions is created by segmenting regions of the vessels. Second, the aneurysms are detected by a classification of the candidates. The third stage allows users to adjust and correct the result of the previous stages using a brushing interface. When the segmentation of the aneurysm is complete, the corresponding ostium curves and morphological descriptors are computed and a report including the results of the analysis and renderings of the aneurysms is generated. The novelty of our approach lies in combining an analytic characterization of aneurysms and vessels to generate a list of candidate regions with a classifier trained on data to identify the aneurysms in the candidate list. The candidate generation is modeled as a global combinatorial optimization problem that is based on a local geometric characterization of aneurysms and vessels and can be efficiently solved using a graph cut algorithm. For the aneurysm classification scheme, we identified four suitable features and modeled appropriate training data. An important aspect of our approach is that the resulting system is fast enough to allow for user interaction with the global optimization by specifying additional constraints via a brushing interface.Item Robust Extraction and Simplification of 2D Symmetric Tensor Field Topology(The Eurographics Association and John Wiley & Sons Ltd., 2019) Jankowai, Jochen; Wang, Bei; Hotz, Ingrid; Gleicher, Michael and Viola, Ivan and Leitte, HeikeIn this work, we propose a controlled simplification strategy for degenerated points in symmetric 2D tensor fields that is based on the topological notion of robustness. Robustness measures the structural stability of the degenerate points with respect to variation in the underlying field. We consider an entire pipeline for generating a hierarchical set of degenerate points based on their robustness values. Such a pipeline includes the following steps: the stable extraction and classification of degenerate points using an edge labeling algorithm, the computation and assignment of robustness values to the degenerate points, and the construction of a simplification hierarchy. We also discuss the challenges that arise from the discretization and interpolation of real world data.Item Evaluating Image Quality Measures to Assess the Impact of Lossy Data Compression Applied to Climate Simulation Data(The Eurographics Association and John Wiley & Sons Ltd., 2019) Baker, Allison; Hammerling, Dorit; Turton, Terece; Gleicher, Michael and Viola, Ivan and Leitte, HeikeApplying lossy data compression to climate model output is an attractive means of reducing the enormous volumes of data generated by climate models. However, because lossy data compression does not exactly preserve the original data, its application to scientific data must be done judiciously. To this end, a collection of measures is being developed to evaluate various aspects of lossy compression quality on climate model output. Given the importance of data visualization to climate scientists interacting with model output, any suite of measures must include a means of assessing whether images generated from the compressed model data are noticeably different from images based on the original model data. Therefore, in this work we conduct a forcedchoice visual evaluation study with climate model data that surveyed more than one hundred participants with domain relevant expertise. In addition to the images created from unaltered climate model data, study images are generated from model data that is subjected to two different types of lossy compression approaches and multiple levels (amounts) of compression. Study participants indicate whether a visual difference can be seen, with respect to the reference image, due to lossy compression effects. We assess the relationship between the perceptual scores from the user study to a number of common (full reference) image quality assessment (IQA) measures, and use statistical models to suggest appropriate measures and thresholds for evaluating lossily compressed climate data. We find the structural similarity index (SSIM) to perform the best, and our findings indicate that the threshold required for climate model data is much higher than previous findings in the literature.