36-Issue 2
Permanent URI for this collection
Browse
Browsing 36-Issue 2 by Issue Date
Now showing 1 - 20 of 45
Results Per Page
Sort Options
Item Diffusion Diagrams: Voronoi Cells and Centroids from Diffusion(The Eurographics Association and John Wiley & Sons Ltd., 2017) Herholz, Philipp; Haase, Felix; Alexa, Marc; Loic Barthe and Bedrich BenesWe define Voronoi cells and centroids based on heat diffusion. These heat cells and heat centroids coincide with the common definitions in Euclidean spaces. On curved surfaces they compare favorably with definitions based on geodesics: they are smooth and can be computed in a stable way with a single linear solve. We analyze the numerics of this approach and can show that diffusion diagrams converge quadratically against the smooth case under mesh refinement, which is better than other common discretization of distance measures in curved spaces. By factorizing the system matrix in a preprocess, computing Voronoi diagrams or centroids amounts to just back-substitution. We show how to localize this operation so that the complexity is linear in the size of the cells and not the underlying mesh. We provide several example applications that show how to benefit from this approach.Item Interactive Paper Tearing(The Eurographics Association and John Wiley & Sons Ltd., 2017) Schreck, Camille; Rohmer, Damien; Hahmann, Stefanie; Loic Barthe and Bedrich BenesWe propose an efficient method to model paper tearing in the context of interactive modeling. The method uses geometrical information to automatically detect potential starting points of tears. We further introduce a new hybrid geometrical and physical-based method to compute the trajectory of tears while procedurally synthesizing high resolution details of the tearing path using a texture based approach. The results obtained are compared with real paper and with previous studies on the expected geometric paths of paper that tears.Item EcoBrush: Interactive Control of Visually Consistent Large-Scale Ecosystems(The Eurographics Association and John Wiley & Sons Ltd., 2017) Gain, James; Long, Harry; Cordonnier, Guillaume; Cani, Marie-Paule; Loic Barthe and Bedrich BenesOne challenge in portraying large-scale natural scenes in virtual environments is specifying the attributes of plants, such as species, size and placement, in a way that respects the features of natural ecosystems, while remaining computationally tractable and allowing user design. To address this, we combine ecosystem simulation with a distribution analysis of the resulting plant attributes to create biome-specific databases, indexed by terrain conditions, such as temperature, rainfall, sunlight and slope. For a specific terrain, interpolated entries are drawn from this database and used to interactively synthesize a full ecosystem, while retaining the fidelity of the original simulations. A painting interface supplies users with semantic brushes for locally adjusting ecosystem age, plant density and variability, as well as optionally picking from a palette of precomputed distributions. Since these brushes are keyed to the underlying terrain properties a balance between user control and real-world consistency is maintained. Our system can be be used to interactively design ecosystems up to 5x5 km2 in extent, or to automatically generate even larger ecosystems in a fraction of the time of a full simulation, while demonstrating known properties from plant ecology such as succession, self-thinning, and underbrush, across a variety of biomes.Item Fully Spectral Partial Shape Matching(The Eurographics Association and John Wiley & Sons Ltd., 2017) Litany, Or; Rodolà , Emanuele; Bronstein, Alex M.; Bronstein, Michael M.; Loic Barthe and Bedrich BenesWe propose an efficient procedure for calculating partial dense intrinsic correspondence between deformable shapes performed entirely in the spectral domain. Our technique relies on the recently introduced partial functional maps formalism and on the joint approximate diagonalization (JAD) of the Laplace-Beltrami operators previously introduced for matching non-isometric shapes. We show that a variant of the JAD problem with an appropriately modified coupling term (surprisingly) allows to construct quasi-harmonic bases localized on the latent corresponding parts. This circumvents the need to explicitly compute the unknown parts by means of the cumbersome alternating minimization used in the previous approaches, and allows performing all the calculations in the spectral domain with constant complexity independent of the number of shape vertices. We provide an extensive evaluation of the proposed technique on standard non-rigid correspondence benchmarks and show state-of-the-art performance in various settings, including partiality and the presence of topological noise.Item STD: Student's t-Distribution of Slopes for Microfacet Based BSDFs(The Eurographics Association and John Wiley & Sons Ltd., 2017) Ribardière, Mickael; Bringier, Benjamin; Meneveaux, Daniel; Simonot, Lionel; Loic Barthe and Bedrich BenesThis paper focuses on microfacet reflectance models, and more precisely on the definition of a new and more general distribution function, which includes both Beckmann's and GGX distributions widely used in the computer graphics community. Therefore, our model makes use of an additional parameter g, which controls the distribution function slope and tail height. It actually corresponds to a bivariate Student's t-distribution in slopes space and it is presented with the associated analytical formulation of the geometric attenuation factor derived from Smith representation.We also provide the analytical derivations for importance sampling isotropic and anisotropic materials. As shown in the results, this new representation offers a finer control of a wide range of materials, while extending the capabilities of fitting parameters with captured data.Item Informative Descriptor Preservation via Commutativity for Shape Matching(The Eurographics Association and John Wiley & Sons Ltd., 2017) Nogneng, Dorian; Ovsjanikov, Maks; Loic Barthe and Bedrich BenesWe consider the problem of non-rigid shape matching, and specifically the functional maps framework that was recently proposed to find correspondences between shapes. A key step in this framework is to formulate descriptor preservation constraints that help to encode the information (e.g., geometric or appearance) that must be preserved by the unknown map. In this paper, we show that considering descriptors as linear operators acting on functions through multiplication, rather than as simple scalar-valued signals, allows to extract significantly more information from a given descriptor and ultimately results in a more accurate functional map estimation. Namely, we show that descriptor preservation constraints can be formulated via commutativity with respect to the unknown map, which can be conveniently encoded by considering relations between matrices in the discrete setting. As a result, when the vector space spanned by the descriptors has a dimension smaller than that of the reduced basis, our optimization may still provide a fully-constrained system leading to accurate point-to-point correspondences, while previous methods might not. We demonstrate on a wide variety of experiments that our approach leads to significant improvement for functional map estimation by helping to reduce the number of necessary descriptor constraints by an order of magnitude, even given an increase in the size of the reduced basis.Item Analysis and Controlled Synthesis of Inhomogeneous Textures(The Eurographics Association and John Wiley & Sons Ltd., 2017) Zhou, Yang; Shi, Huajie; Lischinski, Dani; Gong, Minglun; Kopf, Johannes; Huang, Hui; Loic Barthe and Bedrich BenesMany interesting real-world textures are inhomogeneous and/or anisotropic. An inhomogeneous texture is one where various visual properties exhibit significant changes across the texture's spatial domain. Examples include perceptible changes in surface color, lighting, local texture pattern and/or its apparent scale, and weathering effects, which may vary abruptly, or in a continuous fashion. An anisotropic texture is one where the local patterns exhibit a preferred orientation, which also may vary across the spatial domain. While many example-based texture synthesis methods can be highly effective when synthesizing uniform (stationary) isotropic textures, synthesizing highly non-uniform textures, or ones with spatially varying orientation, is a considerably more challenging task, which so far has remained underexplored. In this paper, we propose a new method for automatic analysis and controlled synthesis of such textures. Given an input texture exemplar, our method generates a source guidance map comprising: (i) a scalar progression channel that attempts to capture the low frequency spatial changes in color, lighting, and local pattern combined, and (ii) a direction field that captures the local dominant orientation of the texture. Having augmented the texture exemplar with this guidance map, users can exercise better control over the synthesized result by providing easily specified target guidance maps, which are used to constrain the synthesis process.Item Parallel BVH Construction using Progressive Hierarchical Refinement(The Eurographics Association and John Wiley & Sons Ltd., 2017) Hendrich, Jakub; Meister, Daniel; Bittner, JiÅ™Ã; Loic Barthe and Bedrich BenesWe propose a novel algorithm for construction of bounding volume hierarchies (BVHs) for multi-core CPU architectures. The algorithm constructs the BVH by a divisive top-down approach using a progressively refined cut of an existing auxiliary BVH. We propose a new strategy for refining the cut that significantly reduces the workload of individual steps of BVH construction. Additionally, we propose a new method for integrating spatial splits into the BVH construction algorithm. The auxiliary BVH is constructed using a very fast method such as LBVH based on Morton codes. We show that the method provides a very good trade-off between the build time and ray tracing performance. We evaluated the method within the Embree ray tracing framework and show that it compares favorably with the Embree BVH builders regarding build time while maintaining comparable ray tracing speed.Item Design Transformations for Rule-based Procedural Modeling(The Eurographics Association and John Wiley & Sons Ltd., 2017) Lienhard, Stefan; Lau, Cheryl; Müller, Pascal; Wonka, Peter; Pauly, Mark; Loic Barthe and Bedrich BenesWe introduce design transformations for rule-based procedural models, e.g., for buildings and plants. Given two or more procedural designs, each specified by a grammar, a design transformation combines elements of the existing designs to generate new designs. We introduce two technical components to enable design transformations. First, we extend the concept of discrete rule switching to rule merging, leading to a very large shape space for combining procedural models. Second, we propose an algorithm to jointly derive two or more grammars, called grammar co-derivation. We demonstrate two applications of our work: we show that our framework leads to a larger variety of models than previous work, and we show fine-grained transformation sequences between two procedural models.Item A Subjective Evaluation of Texture Synthesis Methods(The Eurographics Association and John Wiley & Sons Ltd., 2017) Kolár, Martin; Debattista, Kurt; Chalmers, Alan; Loic Barthe and Bedrich BenesThis paper presents the results of a user study which quantifies the relative and absolute quality of example-based texture synthesis algorithms. In order to allow such evaluation, a list of texture properties is compiled, and a minimal representative set of textures is selected to cover these. Six texture synthesis methods are compared against each other and a reference on a selection of twelve textures by non-expert participants (N = 67). Results demonstrate certain algorithms successfully solve the problem of texture synthesis for certain textures, but there are no satisfactory results for other types of texture properties. The presented textures and results make it possible for future work to be subjectively compared, thus facilitating the development of future texture synthesis methods.Item Flicker Observer Effect: Guiding Attention Through High Frequency Flicker in Images(The Eurographics Association and John Wiley & Sons Ltd., 2017) Waldin, Nicholas; Waldner, Manuela; Viola, Ivan; Loic Barthe and Bedrich BenesDrawing the user's gaze to an important item in an image or a graphical user interface is a common challenge. Usually, some form of highlighting is used, such as a clearly distinct color or a border around the item. Flicker can also be very salient, but is often perceived as annoying. In this paper, we explore high frequency flicker (60 to 72 Hz) to guide the user's attention in an image. At such high frequencies, the critical flicker frequency (CFF) threshold is reached, which makes the flicker appear to fuse into a stable signal. However, the CFF is not uniform across the visual field, but is higher in the peripheral vision at normal lighting conditions. Through experiments, we show that high frequency flicker can be easily detected by observers in the peripheral vision, but the signal is hardly visible in the foveal vision when users directly look at the flickering patch. We demonstrate that this property can be used to draw the user's attention to important image regions using a standard high refresh-rate computer monitor with minimal visible modifications to the image. In an uncalibrated visual search task, users could in a crowded image easily spot the specified search targets flickering with very high frequency. They also reported that high frequency flicker was distracting when they had to attend to another region, while it was hardly noticeable when looking at the flickering region itself.Item Computational Light Painting Using a Virtual Exposure(The Eurographics Association and John Wiley & Sons Ltd., 2017) Salamon, Nestor Z.; Lancelle, Marcel; Eisemann, Elmar; Loic Barthe and Bedrich BenesLight painting is an artform where a light source is moved during a long-exposure shot, creating trails resembling a stroke on a canvas. It is very difficult to perform because the light source needs to be moved at the intended speed and along a precise trajectory. Additionally, images can be corrupted by the person moving the light. We propose computational light painting, which avoids such artifacts and is easy to use. Taking a video of the moving light as input, a virtual exposure allows us to draw the intended light positions in a post-process. We support animation, as well as 3D light sculpting, with high-quality results.Item Sparse Rig Parameter Optimization for Character Animation(The Eurographics Association and John Wiley & Sons Ltd., 2017) Song, Jaewon; Ribera, Roger Blanco i; Cho, Kyungmin; You, Mi; Lewis, J. P.; Choi, Byungkuk; Noh, Junyong; Loic Barthe and Bedrich BenesWe propose a novel motion retargeting method that efficiently estimates artist-friendly rig space parameters. Inspired by the workflow typically observed in keyframe animation, our approach transfers a source motion into a production friendly character rig by optimizing the rig space parameters while balancing the considerations of fidelity to the source motion and the ease of subsequent editing. We propose the use of an intermediate object to transfer both the skeletal motion and the mesh deformation. The target rig-space parameters are then optimized to minimize the error between the motion of an intermediate object and the target character. The optimization uses a set of artist defined weights to modulate the effect of the different rig space parameters over time. Sparsity inducing regularizers and keyframe extraction streamline any additional editing processes. The results obtained with different types of character rigs demonstrate the versatility of our method and its effectiveness in simplifying any necessary manual editing within the production pipeline.Item Unbiased Light Transport Estimators for Inhomogeneous Participating Media(The Eurographics Association and John Wiley & Sons Ltd., 2017) Szirmay-Kalos, László; Georgiev, Iliyan; Magdics, Milán; Molnár, Balázs; Légrády, Dávid; Loic Barthe and Bedrich BenesThis paper presents a new stochastic particle model for efficient and unbiased Monte Carlo rendering of heterogeneous participating media. We randomly add and remove material particles to obtain a density with which free flight sampling and transmittance estimation are simple, while material particle properties are simultaneously modified to maintain the true expectation of the radiance. We show that meeting this requirement may need the introduction of light particles with negative energy and materials with negative extinction, and provide an intuitive interpretation for such phenomena. Unlike previous unbiased methods, the proposed approach does not require a-priori knowledge of the maximum medium density that is typically difficult to obtain for procedural models. However, the method can benefit from an approximate knowledge of the density, which can usually be acquired on-the-fly at little extra cost and can greatly reduce the variance of the proposed estimators. The introduced mechanism can be integrated in participating media renderers where transmittance estimation and free flight sampling are building blocks. We demonstrate its application in a multiple scattering particle tracer, in transmittance computation, and in the estimation of the inhomogeneous air-light integral.Item Zooming on all Actors: Automatic Focus+Context Split Screen Video Generation(The Eurographics Association and John Wiley & Sons Ltd., 2017) Kumar, Moneish; Gandhi, Vineet; Ronfard, Rémi; Gleicher, Michael; Loic Barthe and Bedrich BenesRecordings of stage performances are easy to capture with a high-resolution camera, but are difficult to watch because the actors' faces are too small. We present an approach to automatically create a split screen video that transforms these recordings to show both the context of the scene as well as close-up details of the actors. Given a static recording of a stage performance and tracking information about the actors positions, our system generates videos showing a focus+context view based on computed close-up camera motions using crop-and zoom. The key to our approach is to compute these camera motions such that they are cinematically valid close-ups and to ensure that the set of views of the different actors are properly coordinated and presented. We pose the computation of camera motions as convex optimization that creates detailed views and smooth movements, subject to cinematic constraints such as not cutting faces with the edge of the frame. Additional constraints link the close up views of each actor, causing them to merge seamlessly when actors are close. Generated views are placed in a resulting layout that preserves the spatial relationships between actors. We demonstrate our results on a variety of staged theater and dance performances.Item Performance-Based Biped Control using a Consumer Depth Camera(The Eurographics Association and John Wiley & Sons Ltd., 2017) Lee, Yoonsang; Kwon, Taesoo; Loic Barthe and Bedrich BenesWe present a technique for controlling physically simulated characters using user inputs from an off-the-shelf depth camera. Our controller takes a real-time stream of user poses as input, and simulates a stream of target poses of a biped based on it. The simulated biped mimics the user's actions while moving forward at a modest speed and maintaining balance. The controller is parameterized over a set of modulated reference motions that aims to cover the range of possible user actions. For real-time simulation, the best set of control parameters for the current input pose is chosen from the parameterized sets of pre-computed control parameters via a regression method. By applying the chosen parameters at each moment, the simulated biped can imitate a range of user actions while walking in various interactive scenarios.Item Gradient-Domain Photon Density Estimation(The Eurographics Association and John Wiley & Sons Ltd., 2017) Hua, Binh-Son; Gruson, Adrien; Nowrouzezahrai, Derek; Hachisuka, Toshiya; Loic Barthe and Bedrich BenesThe most common solutions to the light transport problem rely on either Monte Carlo (MC) integration or density estimation methods, such as uni- & bi-directional path tracing or photon mapping. Recent gradient-domain extensions of MC approaches show great promise; here, gradients of the final image are estimated numerically (instead of the image intensities themselves) with coherent paths generated from a deterministic shift mapping. We extend gradient-domain approaches to light transport simulation based on density estimation. As with previous gradient-domain methods, we detail important considerations that arise when moving from a primal- to gradient-domain estimator. We provide an efficient and straightforward solution to these problems. Our solution supports stochastic progressive density estimation, so it is robust to complex transport effects. We show that gradient-domain photon density estimation converges faster than its primal-domain counterpart, as well as being generally more robust than gradient-domain uni- & bi-directional path tracing for scenes dominated by complex transport.Item GPU Ray Tracing using Irregular Grids(The Eurographics Association and John Wiley & Sons Ltd., 2017) Pérard-Gayot, Arsène; Kalojanov, Javor; Slusallek, Philipp; Loic Barthe and Bedrich BenesWe present a spatial index structure to accelerate ray tracing on GPUs. It is a flat, non-hierarchical spatial subdivision of the scene into axis aligned cells of varying size. In order to construct it, we first nest an octree into each cell of a uniform grid. We then apply two optimization passes to increase ray traversal performance: First, we reduce the expected cost for ray traversal by merging cells together. This adapts the structure to complex primitive distributions, solving the "teapot in a stadium" problem. Second, we decouple the cell boundaries used during traversal for rays entering and exiting a given cell. This allows us to extend the exiting boundaries over adjacent cells that are either empty or do not contain additional primitives. Now, exiting rays can skip empty space and avoid repeating intersection tests. Finally, we demonstrate that in addition to the fast ray traversal performance, the structure can be rebuilt efficiently in parallel, allowing for ray tracing dynamic scenes.Item Practical Capture and Reproduction of Phosphorescent Appearance(The Eurographics Association and John Wiley & Sons Ltd., 2017) Nalbach, Oliver; Seidel, Hans-Peter; Ritschel, Tobias; Loic Barthe and Bedrich BenesThis paper proposes a pipeline to accurately acquire, efficiently reproduce and intuitively manipulate phosphorescent appearance. In contrast to common appearance models, a model of phosphorescence needs to account for temporal change (decay) and previous illumination (saturation). For reproduction, we propose a rate equation that can be efficiently solved in combination with other illumination in a mixed integro-differential equation system. We describe an acquisition system to measure spectral coefficients of this rate equation for actual materials. Our model is evaluated by comparison to photographs of actual phosphorescent objects. Finally, we propose an artist-friendly interface to control the behavior of phosphorescent materials by specifying spatio-temporal appearance constraints.Item Geometric Stiffness for Real-time Constrained Multibody Dynamics(The Eurographics Association and John Wiley & Sons Ltd., 2017) Andrews, Sheldon; Teichmann, Marek; Kry, Paul G.; Loic Barthe and Bedrich BenesThis paper focuses on the stable and efficient simulation of articulated rigid body systems for real-time applications. Specifically, we focus on the use of geometric stiffness, which can dramatically increase simulation stability. We examine several numerical problems with the inclusion of geometric stiffness in the equations of motion, as proposed by previous work, and address these issues by introducing a novel method for efficiently building the linear system. This offers improved tractability and numerical efficiency. Furthermore, geometric stiffness tends to significantly dissipate kinetic energy. We propose an adaptive damping scheme, inspired by the geometric stiffness, that uses a stability criterion based on the numerical integrator to determine the amount of non-constitutive damping required to stabilize the simulation. With this approach, not only is the dynamical behavior better preserved, but the simulation remains stable for mass ratios of 1,000,000-to-1 at time steps up to 0.1 s. We present a number of challenging scenarios to demonstrate that our method improves efficiency, and that it increases stability by orders of magnitude compared to previous work.