Volume 35 (2016)
Permanent URI for this community
Browse
Browsing Volume 35 (2016) by Issue Date
Now showing 1 - 20 of 236
Results Per Page
Sort Options
Item Interactive Modeling of Mechanical Objects(The Eurographics Association and John Wiley & Sons Ltd., 2016) Ureta, Francisca Gil; Tymms, Chelsea; Zorin, Denis; Maks Ovsjanikov and Daniele PanozzoObjects with various types of mechanical joints are among the most commonly built. Joints implement a vocabulary of simple constrained motions (kinematic pairs) that can be used to build more complex behaviors. Defining physically correct joint geometry is crucial both for realistic appearance of models during motion, as these are typically the only parts of geometry that stay in contact, and for fabrication. Direct design of joint geometry often requires more effort than the design of the rest of the object geometry, as it requires design of components that stay in precise contact, are aligned with other parts, and allow the desired range of motion. We present an interactive system for creating physically realizable joints with user-controlled appearance. Our system minimizes or, in most cases, completely eliminates the need for the user to manipulate low-level geometry of joints. This is achieved by automatically inferring a small number of plausible combinations of joint dimensions, placement and orientation from part geometry, with the user making the final high-level selection based on object semantic. Through user studies, we demonstrate that functional results with a satisfying appearance can be obtained quickly by users with minimal modeling experience, offering a significant improvement in the time required for joint construction, compared to standard modeling approaches.Item Automatic Portrait Segmentation for Image Stylization(The Eurographics Association and John Wiley & Sons Ltd., 2016) Shen, Xiaoyong; Hertzmann, Aaron; Jia, Jiaya; Paris, Sylvain; Price, Brian; Shechtman, Eli; Sachs, Ian; Joaquim Jorge and Ming LinPortraiture is a major art form in both photography and painting. In most instances, artists seek to make the subject stand out from its surrounding, for instance, by making it brighter or sharper. In the digital world, similar effects can be achieved by processing a portrait image with photographic or painterly filters that adapt to the semantics of the image. While many successful user-guided methods exist to delineate the subject, fully automatic techniques are lacking and yield unsatisfactory results. Our paper first addresses this problem by introducing a new automatic segmentation algorithm dedicated to portraits. We then build upon this result and describe several portrait filters that exploit our automatic segmentation algorithm to generate high-quality portraits.Item Geometry and Attribute Compression for Voxel Scenes(The Eurographics Association and John Wiley & Sons Ltd., 2016) Dado, Bas; Kol, Timothy R.; Bauszat, Pablo; Thiery, Jean-Marc; Eisemann, Elmar; Joaquim Jorge and Ming LinVoxel-based approaches are today's standard to encode volume data. Recently, directed acyclic graphs (DAGs) were successfully used for compressing sparse voxel scenes as well, but they are restricted to a single bit of (geometry) information per voxel. We present a method to compress arbitrary data, such as colors, normals, or reflectance information. By decoupling geometry and voxel data via a novel mapping scheme, we are able to apply the DAG principle to encode the topology, while using a palette-based compression for the voxel attributes, leading to a drastic memory reduction. Our method outperforms existing state-of-the-art techniques and is well-suited for GPU architectures. We achieve real-time performance on commodity hardware for colored scenes with up to 17 hierarchical levels (a 128K3 voxel resolution), which are stored fully in core.Item Direct Shape Optimization for Strengthening 3D Printable Objects(The Eurographics Association and John Wiley & Sons Ltd., 2016) Zhou, Yahan; Kalogerakis, Evangelos; Wang, Rui; Grosse, Ian R.; Eitan Grinspun and Bernd Bickel and Yoshinori DobashiRecently there has been an increasing demand for software that can help designers create functional 3D objects with required physical strength. We introduce a generic and extensible method that directly optimizes a shape subject to physical and geometric constraints. Given an input shape, our method optimizes directly its input mesh representation until it can withstand specified external forces, while remaining similar to the original shape. Our method performs physics simulation and shape optimization together in a unified framework, where the physics simulator is an integral part of the optimizer. We employ geometric constraints to preserve surface details and shape symmetry, and adapt a second-order method with analytic gradients to improve convergence and computation time. Our method provides several advantages over previous work, including the ability to handle general shape deformations, preservation of surface details, and incorporation of user-defined constraints. We demonstrate the effectiveness of our method on a variety of printable 3D objects through detailed simulations as well as physical validations.Item Polycube Simplification for Coarse Layouts of Surfaces and Volumes(The Eurographics Association and John Wiley & Sons Ltd., 2016) Cherchi, Gianmarco; Livesu, Marco; Scateni, Riccardo; Maks Ovsjanikov and Daniele PanozzoRepresenting digital objects with structured meshes that embed a coarse block decomposition is a relevant problem in applications like computer animation, physically-based simulation and Computer Aided Design (CAD). One of the key ingredients to produce coarse block structures is to achieve a good alignment between the mesh singularities (i.e., the corners of each block). In this paper we improve on the polycube-based meshing pipeline to produce both surface and volumetric coarse block-structured meshes of general shapes. To this aim we add a new step in the pipeline. Our goal is to optimize the positions of the polycube corners to produce as coarse as possible base complexes. We rely on re-mapping the positions of the corners on an integer grid and then using integer numerical programming to reach the optimal. To the best of our knowledge this is the first attempt to solve the singularity misalignment problem directly in polycube space. Previous methods for polycube generation did not specifically address this issue. Our corner optimization strategy is efficient and requires a negligible extra running time for the meshing pipeline. In the paper we show that our optimized polycubes produce coarser block structured surface and volumetric meshes if compared with previous approaches. They also induce higher quality hexahedral meshes and are better suited for spline fitting because they reduce the number of splines necessary to cover the domain, thus improving both the efficiency and the overall level of smoothness throughout the volume.Item MCFTLE: Monte Carlo Rendering of Finite-Time Lyapunov Exponent Fields(The Eurographics Association and John Wiley & Sons Ltd., 2016) Günther, Tobias; Kuhn, Alexander; Theisel, Holger; Kwan-Liu Ma and Giuseppe Santucci and Jarke van WijkTraditionally, Lagrangian fields such as finite-time Lyapunov exponents (FTLE) are precomputed on a discrete grid and are ray casted afterwards. This, however, introduces both grid discretization errors and sampling errors during ray marching. In this work, we apply a progressive, view-dependent Monte Carlo-based approach for the visualization of such Lagrangian fields in time-dependent flows. Our approach avoids grid discretization and ray marching errors completely, is consistent, and has a low memory consumption. The system provides noisy previews that converge over time to an accurate high-quality visualization. Compared to traditional approaches, the proposed system avoids explicitly predefined fieldline seeding structures, and uses a Monte Carlo sampling strategy named Woodcock tracking to distribute samples along the view ray. An acceleration of this sampling strategy requires local upper bounds for the FTLE values, which we progressively acquire during the rendering. Our approach is tailored for high-quality visualizations of complex FTLE fields and is guaranteed to faithfully represent detailed ridge surface structures as indicators for Lagrangian coherent structures (LCS). We demonstrate the effectiveness of our approach by using a set of analytic test cases and real-world numerical simulations.Item Similarity Voting based Viewpoint Selection for Volumes(The Eurographics Association and John Wiley & Sons Ltd., 2016) Tao, Yubo; Wang, Qirui; Chen, Wei; Wu, Yingcai; Lin, Hai; Kwan-Liu Ma and Giuseppe Santucci and Jarke van WijkPrevious viewpoint selection methods in volume visualization are generally based on some deterministic measures of viewpoint quality. However, they may not express the familiarity and aesthetic sense of users for features of interest. In this paper, we propose an image-based viewpoint selection model to learn how visualization experts choose representative viewpoints for volumes with similar features. For a given volume, we first collect images with similar features, and these images reflect the viewpoint preferences of the experts when visualizing these features. Each collected image tallies votes to the viewpoints with the best matching based on an image similarity measure, which evaluates the spatial shape and appearance similarity between the collected image and the rendered image from the viewpoint. The optimal viewpoint is the one with the most votes from the collected images, that is, the viewpoint chosen by most visualization experts for similar features. We performed experiments on various volumes available in volume visualization, and made comparisons with traditional viewpoint selection methods. The results demonstrate that our model can select more canonical viewpoints, which are consistent with human perception.Item Advection-Based Function Matching on Surfaces(The Eurographics Association and John Wiley & Sons Ltd., 2016) Azencot, Omri; Vantzos, Orestis; Ben-Chen, Mirela; Maks Ovsjanikov and Daniele PanozzoA tangent vector field on a surface is the generator of a smooth family of maps from the surface to itself, known as the flow. Given a scalar function on the surface, it can be transported, or advected, by composing it with a vector field's flow. Such transport is exhibited by many physical phenomena, e.g., in fluid dynamics. In this paper, we are interested in the inverse problem: given source and target functions, compute a vector field whose flow advects the source to the target. We propose a method for addressing this problem, by minimizing an energy given by the advection constraint together with a regularizing term for the vector field. Our approach is inspired by a similar method in computational anatomy, known as LDDMM, yet leverages the recent framework of functional vector fields for discretizing the advection and the flow as operators on scalar functions. The latter allows us to efficiently generalize LDDMM to curved surfaces, without explicitly computing the flow lines of the vector field we are optimizing for. We show two approaches for the solution: using linear advection with multiple vector fields, and using non-linear advection with a single vector field. We additionally derive an approximated gradient of the corresponding energy, which is based on a novel vector field transport operator. Finally, we demonstrate applications of our machinery to intrinsic symmetry analysis, function interpolation and map improvement.Item Minimal Sampling for Effective Acquisition of Anisotropic BRDFs(The Eurographics Association and John Wiley & Sons Ltd., 2016) Vávra, Radomir; Filip, Jiri; Eitan Grinspun and Bernd Bickel and Yoshinori DobashiBRDFs are commonly used for material appearance representation in applications ranging from gaming and the movie industry, to product design and specification. Most applications rely on isotropic BRDFs due to their better availability as a result of their easier acquisition process. On the other hand, anisotropic BRDF due to their structure-dependent anisotropic highlights, are more challenging to measure and process. This paper thus leverages the measurement process of anisotropic BRDF by representing such BRDF by the collection of isotropic BRDFs. Our method relies on an anisotropic BRDF database decomposition into training isotropic slices forming a linear basis, where appropriate sparse samples are identified using numerical optimization. When an unknown anisotropic BRDF is measured, these samples are repeatably captured in a small set of azimuthal directions. All collected samples are then used for an entire measured BRDF reconstruction from a linear isotropic basis. Typically, below 100 samples are sufficient for the capturing of main visual features of complex anisotropic materials, and we provide a minimal directional samples to be regularly measured at each sample rotation. We conclude, that even simple setups relying on five bidirectional samples (maximum of five stationary sensors/lights) in combination with eight rotations (rotation stage for specimen) can yield a promising reconstruction of anisotropic behavior. Next, we outline extension of the proposed approach to adaptive sampling of anisotropic BRDF to gain even better performance. Finally, we show that our method allows using standard geometries, including industrial multi-angle reflectometers, for the fast measurement of anisotropic BRDFs.Item Visual Debugging Techniques for Reactive Data Visualization(The Eurographics Association and John Wiley & Sons Ltd., 2016) Hoffswell, Jane; Satyanarayan, Arvind; Heer, Jeffrey; Kwan-Liu Ma and Giuseppe Santucci and Jarke van WijkInteraction is critical to effective visualization, but can be difficult to author and debug due to dependencies among input events, program state, and visual output. Recent advances leverage reactive semantics to support declarative design and avoid the ''spaghetti code'' of imperative event handlers. While reactive programming improves many aspects of development, textual specifications still fail to convey the complex runtime dynamics. In response, we contribute a set of visual debugging techniques to reveal the runtime behavior of reactive visualizations. A timeline view records input events and dynamic variable updates, allowing designers to replay and inspect the propagation of values step-by-step. On-demand annotations overlay the output visualization to expose relevant state and scale mappings in-situ. Dynamic tables visualize how backing datasets change over time. To evaluate the effectiveness of these techniques, we study how first-time Vega users debug interactions in faulty, unfamiliar specifications; with no prior knowledge, participants were able to accurately trace errors through the specification.Item Spatial Matching of Animated Meshes(The Eurographics Association and John Wiley & Sons Ltd., 2016) Seo, Hyewon; Cordier, Frederic; Eitan Grinspun and Bernd Bickel and Yoshinori DobashiThis paper presents a new technique which makes use of deformation and motion properties between animated meshes for finding their spatial correspondences. Given a pair of animated meshes exhibiting a semantically similar motion, we compute a sparse set of feature points on each mesh and compute spatial correspondences among them so that points with similar motion behavior are put in correspondence. At the core of our technique is our new, dynamic feature descriptor named AnimHOG, which encodes local deformation characteristics. AnimHOG is ob-tained by computing the gradient of a scalar field inside the spatiotemporal neighborhood of a point of interest, where the scalar values are obtained from the deformation characteristic associated with each vertex and at each frame. The final matching has been formulated as a discreet optimization problem that finds the matching of each feature point on the source mesh so that the descriptor similarity between the corresponding feature pairs as well as compatibility and consistency as measured across the pairs of correspondences are maximized. Consequently, reliable correspondences can be found even among the meshes of very different shape, as long as their motions are similar. We demonstrate the performance of our technique by showing the good quality of matching results we obtained on a number of animated mesh pairs.Item Issue Information(Copyright © 2016 The Eurographics Association and John Wiley & Sons Ltd., 2016) Chen, Min and Zhang, Hao (Richard)Item Visibility Equalizer Cutaway Visualization of Mesoscopic Biological Models(The Eurographics Association and John Wiley & Sons Ltd., 2016) Muzic, Mathieu Le; Mindek, Peter; Sorger, Johannes; Autin, Ludovic; Goodsell, David S.; Viola, Ivan; Kwan-Liu Ma and Giuseppe Santucci and Jarke van WijkIn scientific illustrations and visualization, cutaway views are often employed as an effective technique for occlusion management in densely packed scenes.We propose a novel method for authoring cutaway illustrations of mesoscopic biological models. In contrast to the existing cutaway algorithms, we take advantage of the specific nature of the biological models. These models consist of thousands of instances with a comparably smaller number of different types. Our method constitutes a two stage process. In the first step, clipping objects are placed in the scene, creating a cutaway visualization of the model. During this process, a hierarchical list of stacked bars inform the user about the instance visibility distribution of each individual molecular type in the scene. In the second step, the visibility of each molecular type is fine-tuned through these bars, which at this point act as interactive visibility equalizers. An evaluation of our technique with domain experts confirmed that our equalizer-based approach for visibility specification is valuable and effective for both, scientific and educational purposes.Item Flow Curves: an Intuitive Interface for Coherent Scene Deformation(The Eurographics Association and John Wiley & Sons Ltd., 2016) Ciccone, Loïc; Guay, Martin; Sumner, Robert W.; Eitan Grinspun and Bernd Bickel and Yoshinori DobashiEffective composition in visual arts relies on the principle of movement, where the viewer's eye is directed along subjective curves to a center of interest. We call these curves subjective because they may span the edges and/or center-lines of multiple objects, as well as contain missing portions which are automatically filled by our visual system. By carefully coordinating the shape of objects in a scene, skilled artists direct the viewer's attention via strong subjective curves. While traditional 2D sketching is a natural fit for this task, current 3D tools are object-centric and do not accommodate coherent deformation of multiple shapes into smooth flows. We address this shortcoming with a new sketch-based interface called Flow Curves which allows coordinating deformation across multiple objects. Core components of our method include an understanding of the principle of flow, algorithms to automatically identify subjective curve elements that may span multiple disconnected objects, and a deformation representation tailored to the view-dependent nature of scene movement. As demonstrated in our video, sketching flow curves requires significantly less time than using traditional 3D editing workflows.Item Compressed Multiresolution Hierarchies for High-Quality Precomputed Shadows(The Eurographics Association and John Wiley & Sons Ltd., 2016) Scandolo, Leonardo; Bauszat, Pablo; Eisemann, Elmar; Joaquim Jorge and Ming LinThe quality of shadow mapping is traditionally limited by texture resolution. We present a novel lossless compression scheme for high-resolution shadow maps based on precomputed multiresolution hierarchies. Traditional multiresolution trees can compactly represent homogeneous regions of shadow maps at coarser levels, but require many nodes for fine details. By conservatively adapting the depth map, we can significantly reduce the tree complexity. Our proposed method offers high compression rates, avoids quantization errors, exploits coherency along all data dimensions, and is well-suited for GPU architectures. Our approach can be applied for coherent shadow maps as well, enabling several applications, including high-quality soft shadows and dynamic lights moving on fixed-trajectories.Item Pathfinder: Visual Analysis of Paths in Graphs(The Eurographics Association and John Wiley & Sons Ltd., 2016) Partl, Christian; Gratzl, Samuel; Streit, Marc; Wassermann, Anne-Mai; Pfister, Hanspeter; Schmalstieg, Dieter; Lex, Alexander; Kwan-Liu Ma and Giuseppe Santucci and Jarke van WijkThe analysis of paths in graphs is highly relevant in many domains. Typically, path-related tasks are performed in node-link layouts. Unfortunately, graph layouts often do not scale to the size of many real world networks. Also, many networks are multivariate, i.e., contain rich attribute sets associated with the nodes and edges. These attributes are often critical in judging paths, but directly visualizing attributes in a graph layout exacerbates the scalability problem. In this paper, we present visual analysis solutions dedicated to path-related tasks in large and highly multivariate graphs. We show that by focusing on paths, we can address the scalability problem of multivariate graph visualization, equipping analysts with a powerful tool to explore large graphs. We introduce Pathfinder, a technique that provides visual methods to query paths, while considering various constraints. The resulting set of paths is visualized in both a ranked list and as a node-link diagram. For the paths in the list, we display rich attribute data associated with nodes and edges, and the node-link diagram provides topological context. The paths can be ranked based on topological properties, such as path length or average node degree, and scores derived from attribute data. Pathfinder is designed to scale to graphs with tens of thousands of nodes and edges by employing strategies such as incremental query results. We demonstrate Pathfinder's fitness for use in scenarios with data from a coauthor network and biological pathways.Item A Procedural Approach to Modelling Virtual Climbing Plants With Tendrils(© 2016 The Eurographics Association and John Wiley & Sons Ltd., 2016) Wong, Sai‐Keung; Chen, Kai‐Chun; Chen, Min and Zhang, Hao (Richard)Climbing plants with tendrils show search and coiling behaviour. A tendril searches for a host object and then twines around it. Subsequently, the tendril coils to pull the main stem of the climbing plant close to the host object. Furthermore, the stems may also twine around the host object. In this paper, we propose a procedural approach to incrementally constructing virtual climbing plants with tendrils that mimic such behaviour. We developed several simple rules to guide the construction process. Although our approach is not based on a physical or biological concept, it is fast and efficient in generating climbing plants with tendrils, with acceptable quality. We propose techniques that are useful for enhancing the realism of climbing plants in close‐up view.Climbing plants with tendrils show search and coiling behaviour. A tendril searches for a host object and then twines around it. Subsequently, the tendril coils to pull the main stem of the climbing plant close to the host object. Furthermore, the stems may also twine around the host object. In this paper, we propose a procedural approach to incrementally constructing virtual climbing plants with tendrils that mimic such behaviour. We developed several simple rules to guide the construction process.Item Merged Multiresolution Hierarchies for Shadow Map Compression(The Eurographics Association and John Wiley & Sons Ltd., 2016) Scandolo, Leonardo; Bauszat, Pablo; Eisemann, Elmar; Eitan Grinspun and Bernd Bickel and Yoshinori DobashiMultiresolution Hierarchies (MH) and Directed Acyclic Graphs (DAG) are two recent approaches for the compression of highresolution shadow information. In this paper, we introduce Merged Multiresolution Hierarchies (MMH), a novel data structure that unifies both concepts. An MMH leverages both hierarchical homogeneity exploited in MHs, as well as topological similarities exploited in DAG representations. We propose an efficient hash-based technique to quickly identify and remove redundant subtree instances in a modified relative MH representation. Our solution remains lossless and significantly improves the compression rate compared to both preceding shadow map compression algorithms, while retaining the full run-time performance of traditional MH representations.Item Anisotropic Strain Limiting for Quadrilateral and Triangular Cloth Meshes(Copyright © 2016 The Eurographics Association and John Wiley & Sons Ltd., 2016) Ma, Guanghui; Ye, Juntao; Li, Jituo; Zhang, Xiaopeng; Chen, Min and Zhang, Hao (Richard)The cloth simulation systems often suffer from excessive extension on the polygonal mesh, so an additional strain‐limiting process is typically used as a remedy in the simulation pipeline. A cloth model can be discretized as either a quadrilateral mesh or a triangular mesh, and their strains are measured differently. The edge‐based strain‐limiting method for a quadrilateral mesh creates anisotropic behaviour by nature, as discretization usually aligns the edges along the warp and weft directions. We improve this anisotropic technique by replacing the traditionally used equality constraints with inequality ones in the mathematical optimization, and achieve faster convergence. For a triangular mesh, the state‐of‐the‐art technique measures and constrains the strains along the two principal (and constantly changing) directions in a triangle, resulting in an isotropic behaviour which prohibits shearing. Based on the framework of inequality‐constrained optimization, we propose a warp and weft strain‐limiting formulation. This anisotropic model is more appropriate for textile materials that do not exhibit isotropic strain behaviour.The cloth simulation systems often suffer from excessive extension on the polygonal mesh, so an additional strain‐limiting process is typically used as a remedy in the simulation pipeline. A cloth model can be discretized as either a quadrilateral mesh or a triangular mesh, and their strains are measured differently. The edge‐based strain‐limiting method for a quadrilateral mesh creates anisotropic behaviour by nature, as discretization usually aligns the edges along the warp and weft directions.We improve this anisotropic technique by replacing the traditionally used equality constraints with inequality ones in the mathematical optimization, and achieve faster convergence. For a triangular mesh, the state‐of‐the‐art technique measures and constrains the strains along the two principal (and constantly changing) directions in a triangle, resulting in an isotropic behaviour which prohibits shearing. Based on the framework of inequality‐constrained optimization, we propose a warp and weft strain‐limiting formulation. This anisotropic model is more appropriate for textile materials that do not exhibit isotropic strain behaviour.Item Sparse High-degree Polynomials for Wide-angle Lenses(The Eurographics Association and John Wiley & Sons Ltd., 2016) Schrade, Emanuel; Hanika, Johannes; Dachsbacher, Carsten; Elmar Eisemann and Eugene FiumeRendering with accurate camera models greatly increases realism and improves the match of synthetic imagery to real-life footage. Photographic lenses can be simulated by ray tracing, but the performance depends on the complexity of the lens system, and some operations required for modern algorithms, such as deterministic connections, can be difficult to achieve. We generalise the approach of polynomial optics, i.e. expressing the light field transformation from the sensor to the outer pupil using a polynomial, to work with extreme wide angle (fisheye) lenses and aspherical elements. We also show how sparse polynomials can be constructed from the large space of high-degree terms (we tested up to degree 15). We achieve this using a variant of orthogonal matching pursuit instead of a Taylor series when computing the polynomials. We show two applications: photorealistic rendering using Monte Carlo methods, where we introduce a new aperture sampling technique that is suitable for light tracing, and an interactive preview method suitable for rendering with deep images.