Volume 43 (2024)
Permanent URI for this community
Browse
Browsing Volume 43 (2024) by Issue Date
Now showing 1 - 20 of 252
Results Per Page
Sort Options
Item Seamless and Aligned Texture Optimization for 3D Reconstruction(The Eurographics Association and John Wiley & Sons Ltd., 2024) Wang, Lei; Ge, Linlin; Zhang, Qitong; Feng, Jieqing; Chen, Renjie; Ritschel, Tobias; Whiting, EmilyRestoring the appearance of the model is a crucial step for achieving realistic 3D reconstruction. High-fidelity textures can also conceal some geometric defects. Since the estimated camera parameters and reconstructed geometry usually contain errors, subsequent texture mapping often suffers from undesirable visual artifacts such as blurring, ghosting, and visual seams. In particular, significant misalignment between the reconstructed model and the registered images will lead to texturing the mesh with inconsistent image regions. However, eliminating various artifacts to generate high-quality textures remains a challenge. In this paper, we address this issue by designing a texture optimization method to generate seamless and aligned textures for 3D reconstruction. The main idea is to detect misalignment regions between images and geometry and exclude them from texture mapping. To handle the texture holes caused by these excluded regions, a cross-patch texture hole-filling method is proposed, which can also synthesize plausible textures for invisible faces. Moreover, for better stitching of the textures from different views, an improved camera pose optimization is present by introducing color adjustment and boundary point sampling. Experimental results show that the proposed method can eliminate the artifacts caused by inaccurate input data robustly and produce highquality texture results compared with state-of-the-art methods.Item Polygon Laplacian Made Robust(© 2024 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2024)Item ETBHD‐HMF: A Hierarchical Multimodal Fusion Architecture for Enhanced Text‐Based Hair Design(© 2024 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2024) He, Rong; Jiao, Ge; Li, Chen; Alliez, Pierre; Wimmer, MichaelText‐based hair design (TBHD) represents an innovative approach that utilizes text instructions for crafting hairstyle and colour, renowned for its flexibility and scalability. However, enhancing TBHD algorithms to improve generation quality and editing accuracy remains a current research difficulty. One important reason is that existing models fall short in alignment and fusion designs. Therefore, we propose a new layered multimodal fusion network called ETBHD‐HMF, which decouples the input image and hair text information into layered hair colour and hairstyle representations. Within this network, the channel enhancement separation (CES) module is proposed to enhance important signals and suppress noise for text representation obtained from CLIP, thus improving generation quality. Based on this, we develop the weighted mapping fusion (WMF) sub‐networks for hair colour and hairstyle. This sub‐network applies the mapper operations to input image and text representations, acquiring joint information. The WMF then selectively merges image representation and joint information from various style layers using weighted operations, ultimately achieving fine‐grained hairstyle designs. Additionally, to enhance editing accuracy and quality, we design a modality alignment loss to refine and optimize the information transmission and integration of the network. The experimental results of applying the network to the CelebA‐HQ dataset demonstrate that our proposed model exhibits superior overall performance in terms of generation quality, visual realism, and editing accuracy. ETBHD‐HMF (27.8 PSNR, 0.864 IDS) outperformed HairCLIP (26.9 PSNR, 0.828 IDS), with a 3% higher PSNR and a 4% higher IDS.Item Curved Three-Director Cosserat Shells with Strong Coupling(The Eurographics Association and John Wiley & Sons Ltd., 2024) Löschner, Fabian; Fernández-Fernández, José Antonio; Jeske, Stefan Rhys; Bender, Jan; Skouras, Melina; Wang, HeContinuum-based shell models are an established approach for the simulation of thin deformables in computer graphics. However, existing research in physically-based animation is mostly focused on shear-rigid Kirchhoff-Love shells. In this work we explore three-director Cosserat (micropolar) shells which introduce additional rotational degrees of freedom. This microrotation field models transverse shearing and in-plane drilling rotations. We propose an incremental potential formulation of the Cosserat shell dynamics which allows for strong coupling with frictional contact and other physical systems. We evaluate a corresponding finite element discretization for non-planar shells using second-order elements which alleviates shear-locking and permits simulation of curved geometries. Our formulation and the discretization, in particular of the rotational degrees of freedom, is designed to integrate well with typical simulation approaches in physically-based animation. While the discretization of the rotations requires some care, we demonstrate that they do not pose significant numerical challenges in Newton's method. In our experiments we also show that the codimensional shell model is consistent with the respective three-dimensional model. We qualitatively compare our formulation with Kirchhoff-Love shells and demonstrate intriguing use cases for the additional modes of control over dynamic deformations offered by the Cosserat model such as directly prescribing rotations or angular velocities and influencing the shell's curvature.Item Directional Texture Editing for 3D Models(© 2024 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2024) Liu, Shengqi; Chen, Zhuo; Gao, Jingnan; Yan, Yichao; Zhu, Wenhan; Lyu, Jiangjing; Yang, Xiaokang; Alliez, Pierre; Wimmer, MichaelTexture editing is a crucial task in 3D modelling that allows users to automatically manipulate the surface materials of 3D models. However, the inherent complexity of 3D models and the ambiguous text description lead to the challenge of this task. To tackle this challenge, we propose ITEM3D, a exture diting odel designed for automatic object editing according to the text nstructions. Leveraging the diffusion models and the differentiable rendering, ITEM3D takes the rendered images as the bridge between text and 3D representation and further optimizes the disentangled texture and environment map. Previous methods adopted the absolute editing direction, namely score distillation sampling (SDS) as the optimization objective, which unfortunately results in noisy appearances and text inconsistencies. To solve the problem caused by the ambiguous text, we introduce a relative editing direction, an optimization objective defined by the noise difference between the source and target texts, to release the semantic ambiguity between the texts and images. Additionally, we gradually adjust the direction during optimization to further address the unexpected deviation in the texture domain. Qualitative and quantitative experiments show that our ITEM3D outperforms the state‐of‐the‐art methods on various 3D objects. We also perform text‐guided relighting to show explicit control over lighting. Our project page: .Item Quad Mesh Quantization Without a T‐Mesh(© 2024 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2024) Coudert‐Osmont, Yoann; Desobry, David; Heistermann, Martin; Bommes, David; Ray, Nicolas; Sokolov, Dmitry; Alliez, Pierre; Wimmer, MichaelGrid preserving maps of triangulated surfaces were introduced for quad meshing because the 2D unit grid in such maps corresponds to a sub‐division of the surface into quad‐shaped charts. These maps can be obtained by solving a mixed integer optimization problem: Real variables define the geometry of the charts and integer variables define the combinatorial structure of the decomposition. To make this optimization problem tractable, a common strategy is to ignore integer constraints at first, then to enforce them in a so‐called quantization step. Actual quantization algorithms exploit the geometric interpretation of integer variables to solve an equivalent problem: They consider that the final quad mesh is a sub‐division of a T‐mesh embedded in the surface, and optimize the number of sub‐divisions for each edge of this T‐mesh. We propose to operate on a decimated version of the original surface instead of the T‐mesh. It is easier to implement and to adapt to constraints such as free boundaries, complex feature curves network .Item Entropy-driven Progressive Compression of 3D Point Clouds(The Eurographics Association and John Wiley & Sons Ltd., 2024) Zampieri, Armand; Delarue, Guillaume; Bakr, Nachwa Abou; Alliez, Pierre; Hu, Ruizhen; Lefebvre, Sylvain3D point clouds stand as one of the prevalent representations for 3D data, offering the advantage of closely aligning with sensing technologies and providing an unbiased representation of a measured physical scene. Progressive compression is required for real-world applications operating on networked infrastructures with restricted or variable bandwidth. We contribute a novel approach that leverages a recursive binary space partition, where the partitioning planes are not necessarily axis-aligned and optimized via an entropy criterion. The planes are encoded via a novel adaptive quantization method combined with prediction. The input 3D point cloud is encoded as an interlaced stream of partitioning planes and number of points in the cells of the partition. Compared to previous work, the added value is an improved rate-distortion performance, especially for very low bitrates. The latter are critical for interactive navigation of large 3D point clouds on heterogeneous networked infrastructures.Item G-Style: Stylized Gaussian Splatting(The Eurographics Association and John Wiley & Sons Ltd., 2024) Kovács, Áron Samuel; Hermosilla, Pedro; Raidou, Renata Georgia; Chen, Renjie; Ritschel, Tobias; Whiting, EmilyWe introduce G -Style, a novel algorithm designed to transfer the style of an image onto a 3D scene represented using Gaussian Splatting. Gaussian Splatting is a powerful 3D representation for novel view synthesis, as-compared to other approaches based on Neural Radiance Fields-it provides fast scene renderings and user control over the scene. Recent pre-prints have demonstrated that the style of Gaussian Splatting scenes can be modified using an image exemplar. However, since the scene geometry remains fixed during the stylization process, current solutions fall short of producing satisfactory results. Our algorithm aims to address these limitations by following a three-step process: In a pre-processing step, we remove undesirable Gaussians with large projection areas or highly elongated shapes. Subsequently, we combine several losses carefully designed to preserve different scales of the style in the image, while maintaining as much as possible the integrity of the original scene content. During the stylization process and following the original design of Gaussian Splatting, we split Gaussians where additional detail is necessary within our scene by tracking the gradient of the stylized color. Our experiments demonstrate that G -Style generates high-quality stylizations within just a few minutes, outperforming existing methods both qualitatively and quantitativelyItem Transparent Risks: The Impact of the Specificity and Visual Encoding of Uncertainty on Decision Making(The Eurographics Association and John Wiley & Sons Ltd., 2024) Matzen, Laura E.; Howell, Breannan C.; Tuft, Marie; Divis, Kristin M.; Aigner, Wolfgang; Archambault, Daniel; Bujack, RoxanaPeople frequently make decisions based on uncertain information. Prior research has shown that visualizations of uncertainty can help to support better decision making. However, research has also shown that different representations of the same information can lead to different patterns of decision making. It is crucial for researchers to develop a better scientific understanding of when, why and how different representations of uncertainty lead viewers to make different decisions. This paper seeks to address this need by comparing geospatial visualizations of wildfire risk to verbal descriptions of the same risk. In three experiments, we manipulated the specificity of the uncertain information as well as the visual cues used to encode risk in the visualizations. All three experiments found that participants were more likely to evacuate in response to a hypothetical wildfire if the risk information was presented verbally. When the risk was presented visually, participants were less likely to evacuate, particularly when transparency was used to encode the risk information. Experiment 1 showed that evacuation rates were lower for transparency maps than for other types of visualizations. Experiments 2 and 3 sought to replicate this effect and to test how it related to other factors. Experiment 2 varied the hue used for the transparency maps and Experiment 3 manipulated the salience of the borders between the different risk levels. These experiments showed lower evacuation rates in response to transparency maps regardless of hue. The effect was partially, but not entirely, mitigated by adding salient borders to the transparency maps. Taken together, these experiments show that using transparency to encode information about risk can lead to very different patterns of decision making than other encodings of the same information.Item Computational Smocking through Fabric-Thread Interaction(The Eurographics Association and John Wiley & Sons Ltd., 2024) Zhou, Ningfeng; Ren, Jing; Sorkine-Hornung, Olga; Bermano, Amit H.; Kalogerakis, EvangelosWe formalize Italian smocking, an intricate embroidery technique that gathers flat fabric into pleats along meandering lines of stitches, resulting in pleats that fold and gather where the stitching veers. In contrast to English smocking, characterized by colorful stitches decorating uniformly shaped pleats, and Canadian smocking, which uses localized knots to form voluminous pleats, Italian smocking permits the fabric to move freely along the stitched threads following curved paths, resulting in complex and unpredictable pleats with highly diverse, irregular structures, achieved simply by pulling on the threads. We introduce a novel method for digital previewing of Italian smocking results, given the thread stitching path as input. Our method uses a coarse-grained mass-spring system to simulate the interaction between the threads and the fabric. This configuration guides the fine-level fabric deformation through an adaptation of the state-of-the-art simulator, C-IPC [LKJ21]. Our method models the general problem of fabric-thread interaction and can be readily adapted to preview Canadian smocking as well.We compare our results to baseline approaches and physical fabrications to demonstrate the accuracy of our method.Item Cinematographic Camera Diffusion Model(The Eurographics Association and John Wiley & Sons Ltd., 2024) Jiang, Hongda; Wang, Xi; Christie, Marc; Liu, Libin; Chen, Baoquan; Bermano, Amit H.; Kalogerakis, EvangelosDesigning effective camera trajectories in virtual 3D environments is a challenging task even for experienced animators. Despite an elaborate film grammar, forged through years of experience, that enables the specification of camera motions through cinematographic properties (framing, shots sizes, angles, motions), there are endless possibilities in deciding how to place and move cameras with characters. Dealing with these possibilities is part of the complexity of the problem. While numerous techniques have been proposed in the literature (optimization-based solving, encoding of empirical rules, learning from real examples,...), the results either lack variety or ease of control. In this paper, we propose a cinematographic camera diffusion model using a transformer-based architecture to handle temporality and exploit the stochasticity of diffusion models to generate diverse and qualitative trajectories conditioned by high-level textual descriptions. We extend the work by integrating keyframing constraints and the ability to blend naturally between motions using latent interpolation, in a way to augment the degree of control of the designers. We demonstrate the strengths of this text-to-camera motion approach through qualitative and quantitative experiments and gather feedback from professional artists. The code and data are available at https://github.com/jianghd1996/Camera-control.Item Multiphase Viscoelastic Non-Newtonian Fluid Simulation(The Eurographics Association and John Wiley & Sons Ltd., 2024) Zhang, Yalan; Long, Shen; Xu, Yanrui; Wang, Xiaokun; Yao, Chao; Kosinka, Jiri; Frey, Steffen; Telea, Alexandru; Ban, Xiaojuan; Skouras, Melina; Wang, HeWe propose an SPH-based method for simulating viscoelastic non-Newtonian fluids within a multiphase framework. For this, we use mixture models to handle component transport and conformation tensor methods to handle the fluid's viscoelastic stresses. In addition, we consider a bonding effects network to handle the impact of microscopic chemical bonds on phase transport. Our method supports the simulation of both steady-state viscoelastic fluids and discontinuous shear behavior. Compared to previous work on single-phase viscous non-Newtonian fluids, our method can capture more complex behavior, including material mixing processes that generate non-Newtonian fluids. We adopt a uniform set of variables to describe shear thinning, shear thickening, and ordinary Newtonian fluids while automatically calculating local rheology in inhomogeneous solutions. In addition, our method can simulate large viscosity ranges under explicit integration schemes, which typically requires implicit viscosity solvers under earlier single-phase frameworks.Item A Hybrid Parametrization Method for B-Spline Curve Interpolation via Supervised Learning(The Eurographics Association and John Wiley & Sons Ltd., 2024) Song, Tianyu; Shen, Tong; Ge, Linlin; Feng, Jieqing; Chen, Renjie; Ritschel, Tobias; Whiting, EmilyB-spline curve interpolation is a fundamental algorithm in computer-aided geometric design. Determining suitable parameters based on data points distribution has always been an important issue for high-quality interpolation curves generation. Various parameterization methods have been proposed. However, there is no universally satisfactory method that is applicable to data points with diverse distributions. In this work, a hybrid parametrization method is proposed to overcome the problem. For a given set of data points, a classifier via supervised learning identifies an optimal local parameterization method based on the local geometric distribution of four adjacent data points, and the optimal local parameters are computed using the selected optimal local parameterization method for the four adjacent data points. Then a merging method is employed to calculate global parameters which align closely with the local parameters. Experiments demonstrate that the proposed hybrid parameterization method well adapts the different distributions of data points statistically. The proposed method has a flexible and scalable framework, which can includes current and potential new parameterization methods as its components.Item Single-Image SVBRDF Estimation with Learned Gradient Descent(The Eurographics Association and John Wiley & Sons Ltd., 2024) Luo, Xuejiao; Scandolo, Leonardo; Bousseau, Adrien; Eisemann, Elmar; Bermano, Amit H.; Kalogerakis, EvangelosRecovering spatially-varying materials from a single photograph of a surface is inherently ill-posed, making the direct application of a gradient descent on the reflectance parameters prone to poor minima. Recent methods leverage deep learning either by directly regressing reflectance parameters using feed-forward neural networks or by learning a latent space of SVBRDFs using encoder-decoder or generative adversarial networks followed by a gradient-based optimization in latent space. The former is fast but does not account for the likelihood of the prediction, i.e., how well the resulting reflectance explains the input image. The latter provides a strong prior on the space of spatially-varying materials, but this prior can hinder the reconstruction of images that are too different from the training data. Our method combines the strengths of both approaches. We optimize reflectance parameters to best reconstruct the input image using a recurrent neural network, which iteratively predicts how to update the reflectance parameters given the gradient of the reconstruction likelihood. By combining a learned prior with a likelihood measure, our approach provides a maximum a posteriori estimate of the SVBRDF. Our evaluation shows that this learned gradient-descent method achieves state-of-the-art performance for SVBRDF estimation on synthetic and real images.Item Evaluating Graph Layout Algorithms: A Systematic Review of Methods and Best Practices(© 2024 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2024) Di Bartolomeo, Sara; Crnovrsanin, Tarik; Saffo, David; Puerta, Eduardo; Wilson, Connor; Dunne, Cody; Alliez, Pierre; Wimmer, MichaelEvaluations—encompassing computational evaluations, benchmarks and user studies—are essential tools for validating the performance and applicability of graph and network layout algorithms (also known as graph drawing). These evaluations not only offer significant insights into an algorithm's performance and capabilities, but also assist the reader in determining if the algorithm is suitable for a specific purpose, such as handling graphs with a high volume of nodes or dense graphs. Unfortunately, there is no standard approach for evaluating layout algorithms. Prior work holds a ‘Wild West’ of diverse benchmark datasets and data characteristics, as well as varied evaluation metrics and ways to report results. It is often difficult to compare layout algorithms without first implementing them and then running your own evaluation. In this systematic review, we delve into the myriad of methodologies employed to conduct evaluations—the utilized techniques, reported outcomes and the pros and cons of choosing one approach over another. Our examination extends beyond computational evaluations, encompassing user‐centric evaluations, thus presenting a comprehensive understanding of algorithm validation. This systematic review—and its accompanying website—guides readers through evaluation types, the types of results reported, and the available benchmark datasets and their data characteristics. Our objective is to provide a valuable resource for readers to understand and effectively apply various evaluation methods for graph layout algorithms. A free copy of this paper and all supplemental material is available at , and the categorized papers are accessible on our website at .Item Hierarchical Spherical Cross‐Parameterization for Deforming Characters(© 2024 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2024) Cao, Lizhou; Peng, Chao; Alliez, Pierre; Wimmer, MichaelThe demand for immersive technology and realistic virtual environments has created a need for automated solutions to generate characters with morphological variations. However, existing approaches either rely on manual labour or oversimplify the problem by limiting it to static meshes or deformation transfers without shape morphing. In this paper, we propose a new cross‐parameterization approach that semi‐automates the generation of morphologically diverse characters with synthesized articulations and animations. The main contribution of this work is that our approach parameterizes deforming characters into a novel hierarchical multi‐sphere domain, while considering the attributes of mesh topology, deformation and animation. With such a multi‐sphere domain, our approach minimizes parametric distortion rates, enhances the bijectivity of parameterization and aligns deforming feature correspondences. The alignment process we propose allows users to focus only on major joint pairs, which is much simpler and more intuitive than the existing alignment solutions that involve a manual process of identifying feature points on mesh surfaces. Compared to recent works, our approach achieves high‐quality results in the applications of 3D morphing, texture transfer, character synthesis and deformation transfer.Item Patch Decomposition for Efficient Mesh Contours Extraction(The Eurographics Association and John Wiley & Sons Ltd., 2024) Tsiapkolis, Panagiotis; Bénard, Pierre; Garces, Elena; Haines, EricObject-space occluding contours of triangular meshes (a.k.a. mesh contours) are at the core of many methods in computer graphics and computational geometry. A number of hierarchical data-structures have been proposed to accelerate their computation on the CPU, but they do not map well to the GPU for real-time applications, such as video games. We show that a simple, flat data-structure composed of patches bounded by a normal cone and a bounding sphere may reach this goal, provided it is constructed to maximize the probability for a patch to be culled over all viewpoints. We derive a heuristic metric to efficiently estimate this probability, and present a greedy, bottom-up algorithm that constructs patches by grouping mesh edges according to this metric. In addition, we propose an effective way of computing their bounding sphere. We demonstrate through extensive experiments that this data-structure achieves similar performance as the state-of-the-art on the CPU but is also perfectly adapted to the GPU, leading to up to ×5 speedups.Item An Experimental Evaluation of Viewpoint-Based 3D Graph Drawing(The Eurographics Association and John Wiley & Sons Ltd., 2024) Wageningen, Simon van; Mchedlidze, Tamara; Telea, Alexandru; Aigner, Wolfgang; Archambault, Daniel; Bujack, RoxanaNode-link diagrams are a widely used metaphor for creating visualizations of relational data. Most frequently, such techniques address creating 2D graph drawings, which are easy to use on computer screens and in print. In contrast, 3D node-link graph visualizations are far less used, as they have many known limitations and comparatively few well-understood advantages. A key issue here is that such 3D visualizations require users to select suitable viewpoints. We address this limitation by studying the ability of layout techniques to produce high-quality views of 3D graph drawings. For this, we perform a thorough experimental evaluation, comparing 3D graph drawings, rendered from a covering sampling of all viewpoints, with their 2D counterparts across various state-of-the-art node-link drawing algorithms, graph families, and quality metrics. Our results show that, depending on the graph family, 3D node-link diagrams can contain a many viewpoints that yield 2D visualizations that are of higher quality than those created by directly using 2D node-link diagrams. This not only sheds light on the potential of 3D node-link diagrams but also gives a simple approach to produce high-quality 2D node-link diagrams.Item FastFlow: GPU Acceleration of Flow and Depression Routing for Landscape Simulation(The Eurographics Association and John Wiley & Sons Ltd., 2024) Jain, Aryamaan; Kerbl, Bernhard; Gain, James; Finley, Brandon; Cordonnier, Guillaume; Chen, Renjie; Ritschel, Tobias; Whiting, EmilyTerrain analysis plays an important role in computer graphics, hydrology and geomorphology. In particular, analyzing the path of material flow over a terrain with consideration of local depressions is a precursor to many further tasks in erosion, river formation, and plant ecosystem simulation. For example, fluvial erosion simulation used in terrain modeling computes water discharge to repeatedly locate erosion channels for soil removal and transport. Despite its significance, traditional methods face performance constraints, limiting their broader applicability. In this paper, we propose a novel GPU flow routing algorithm that computes the water discharge in O(logn) iterations for a terrain with n vertices (assuming n processors). We also provide a depression routing algorithm to route the water out of local minima formed by depressions in the terrain, which converges in O(log2 n) iterations. Our implementation of these algorithms leads to a 5× speedup for flow routing and 34× to 52× speedup for depression routing compared to previous work on a 10242 terrain, enabling interactive control of terrain simulation.Item Spatially and Temporally Optimized Audio-Driven Talking Face Generation(The Eurographics Association and John Wiley & Sons Ltd., 2024) Dong, Biao; Ma, Bo-Yao; Zhang, Lei; Chen, Renjie; Ritschel, Tobias; Whiting, EmilyAudio-driven talking face generation is essentially a cross-modal mapping from audio to video frames. The main challenge lies in the intricate one-to-many mapping, which affects lip sync accuracy. And the loss of facial details during image reconstruction often results in visual artifacts in the generated video. To overcome these challenges, this paper proposes to enhance the quality of generated talking faces with a new spatio-temporal consistency. Specifically, the temporal consistency is achieved through consecutive frames of the each phoneme, which form temporal modules that exhibit similar lip appearance changes. This allows for adaptive adjustment in the lip movement for accurate sync. The spatial consistency pertains to the uniform distribution of textures within local regions, which form spatial modules and regulate the texture distribution in the generator. This yields fine details in the reconstructed facial images. Extensive experiments show that our method can generate more natural talking faces than previous state-of-the-art methods in both accurate lip sync and realistic facial details.