38-Issue 1
Permanent URI for this collection
Browse
Browsing 38-Issue 1 by Issue Date
Now showing 1 - 20 of 45
Results Per Page
Sort Options
Item Robust Structure‐Based Shape Correspondence(© 2019 The Eurographics Association and John Wiley & Sons Ltd., 2019) Kleiman, Yanir; Ovsjanikov, Maks; Chen, Min and Benes, BedrichWe present a robust method to find region‐level correspondences between shapes, which are invariant to changes in geometry and applicable across multiple shape representations. We generate simplified shape graphs by jointly decomposing the shapes, and devise an adapted graph‐matching technique, from which we infer correspondences between shape regions. The simplified shape graphs are designed to primarily capture the overall structure of the shapes, without reflecting precise information about the geometry of each region, which enables us to find correspondences between shapes that might have significant geometric differences. Moreover, due to the special care we take to ensure the robustness of each part of our pipeline, our method can find correspondences between shapes with different representations, such as triangular meshes and point clouds. We demonstrate that the region‐wise matching that we obtain can be used to find correspondences between feature points, reveal the intrinsic self‐similarities of each shape and even construct point‐to‐point maps across shapes. Our method is both time and space efficient, leading to a pipeline that is significantly faster than comparable approaches. We demonstrate the performance of our approach through an extensive quantitative and qualitative evaluation on several benchmarks where we achieve comparable or superior performance to existing methods.We present a robust method to find region‐level correspondences between shapes, which are invariant to changes in geometry and applicable across multiple shape representations. We generate simplified shape graphs by jointly decomposing the shapes, and devise an adapted graph‐matching technique, from which we infer correspondences between shape regions. The simplified shape graphs are designed to primarily capture the overall structure of the shapes, without reflecting precise information about the geometry of each region, which enables us to find correspondences between shapes that might have significant geometric differences. Moreover, due to the special care we take to ensure the robustness of each part of our pipeline, our method can find correspondences between shapes with different representations, such as triangular meshes and point clouds.Item Incremental Labelling of Voronoi Vertices for Shape Reconstruction(© 2019 The Eurographics Association and John Wiley & Sons Ltd., 2019) Peethambaran, J.; Parakkat, A.D.; Tagliasacchi, A.; Wang, R.; Muthuganapathy, R.; Chen, Min and Benes, BedrichWe present an incremental Voronoi vertex labelling algorithm for approximating contours, medial axes and dominant points (high curvature points) from 2D point sets. Though there exist many number of algorithms for reconstructing curves, medial axes or dominant points, a unified framework capable of approximating all the three in one place from points is missing in the literature. Our algorithm estimates the normals at each sample point through poles (farthest Voronoi vertices of a sample point) and uses the estimated normals and the corresponding tangents to determine the spatial locations (inner or outer) of the Voronoi vertices with respect to the original curve. The vertex classification helps to construct a piece‐wise linear approximation to the object boundary. We provide a theoretical analysis of the algorithm for points non‐uniformly (ε‐sampling) sampled from simple, closed, concave and smooth curves. The proposed framework has been thoroughly evaluated for its usefulness using various test data. Results indicate that even sparsely and non‐uniformly sampled curves with outliers or collection of curves are faithfully reconstructed by the proposed algorithm.We present an incremental Voronoi vertex labelling algorithm for approximating contours, medial axes and dominant points (high curvature points) from 2D point sets. Though there exist many number of algorithms for reconstructing curves, medial axes or dominant points, a unified framework capable of approximating all the three in one place from points is missing in the literature. Our algorithm estimates the normals at each sample point through poles (farthest Voronoi vertices of a sample point) and uses the estimated normals and the corresponding tangents to determine the spatial locations (inner or outer) of the Voronoi vertices with respect to the original curve. The vertex classification helps to construct a piece‐wise linear approximation to the object boundary. We provide a theoretical analysis of the algorithm for points non‐uniformly (ε‐sampling) sampled from simple, closed, concave and smooth curves.Item A Variational Approach to Registration with Local Exponential Coordinates(© 2019 The Eurographics Association and John Wiley & Sons Ltd., 2019) Paman, Ashish; Rangarajan, Ramsharan; Chen, Min and Benes, BedrichWe identify a novel parameterization for the group of finite rotations (SO), consisting of an atlas of exponential maps defined over local tangent planes, for the purpose of computing isometric transformations in registration problems that arise in machine vision applications. Together with a simple representation for translations, the resulting system of coordinates for rigid body motions is proper, free from singularities, is unrestricted in the magnitude of motions that can be represented and poses no difficulties in computer implementations despite their multi‐chart nature. Crucially, such a parameterization helps to admit varied types of data sets, to adopt data‐dependent error functionals for registration, seamlessly bridges correspondence and pose calculations, and inspires systematic variational procedures for computing optimal solutions. As a representative problem, we consider that of registering point clouds onto implicit surfaces without introducing any discretization of the latter. We derive coordinate‐free stationarity conditions, compute consistent linearizations, provide algorithms to compute optimal solutions and examine their performance with detailed examples. The algorithm generalizes naturally to registering curves and surfaces onto implicit manifolds, is directly adaptable to handle the familiar problem of pairwise registration of point clouds and allows for incorporating scale factors during registration.We identify a novel parameterization for the group of finite rotations (SO), consisting of an atlas of exponential maps defined over local tangent planes, for the purpose of computing isometric transformations in registration problems that arise in machine vision applications. Together with a simple representation for translations, the resulting system of coordinates for rigid body motions is proper, free from singularities, is unrestricted in the magnitude of motions that can be represented and poses no difficulties in computer implementations despite their multi‐chart nature. Crucially, such a parameterization helps to admit varied types of data sets, to adopt data‐dependent error functionals for registration, seamlessly bridges correspondence and pose calculations, and inspires systematic variational procedures for computing optimal solutions. As a representative problem, we consider that of registering point clouds onto implicit surfaces without introducing any discretization of the latter. We derive coordinate‐free stationarity conditions, compute consistent linearizations, provide algorithms to compute optimal solutions and examine their performance with detailed examples. The algorithm generalizes naturally to registering curves and surfaces onto implicit manifolds, is directly adaptable to handle the familiar problem of pairwise registration of point clouds and allows for incorporating scale factors during registration.Item TexNN: Fast Texture Encoding Using Neural Networks(© 2019 The Eurographics Association and John Wiley & Sons Ltd., 2019) Pratapa, S.; Olson, T.; Chalfin, A.; Manocha, D.; Chen, Min and Benes, BedrichWe present a novel deep learning‐based method for fast encoding of textures into current texture compression formats. Our approach uses state‐of‐the‐art neural network methods to compute the appropriate encoding configurations for fast compression. A key bottleneck in the current encoding algorithms is the search step, and we reduce that computation to a classification problem. We use a trained neural network approximation to quickly compute the encoding configuration for a given texture. We have evaluated our approach for compressing the textures for the widely used adaptive scalable texture compression format and evaluate the performance for different block sizes corresponding to 4 × 4, 6 × 6 and 8 × 8. Overall, our method (TexNN) speeds up the encoding computation up to an order of magnitude compared to prior compression algorithms with very little or no loss in the visual quality.We present a novel deep learning‐based method for fast encoding of textures into current texture compression formats. Our approach uses state‐of‐the‐art neural network methods to compute the appropriate encoding configurations for fast compression. A key bottleneck in the current encoding algorithms is the search step, and we reduce that computation to a classification problem. We use a trained neural network approximation to quickly compute the encoding configuration for a given texture.We have evaluated our approach for compressing the textures for the widely used adaptive scalable texture compression format and evaluate the performance for different block sizes corresponding to 4 × 4, 6 × 6 and 8 × 8.Item Privacy Preserving Visualization: A Study on Event Sequence Data(© 2019 The Eurographics Association and John Wiley & Sons Ltd., 2019) Chou, Jia‐Kai; Wang, Yang; Ma, Kwan‐Liu; Chen, Min and Benes, BedrichThe inconceivable ability and common practice to collect personal data as well as the power of data‐driven approaches to businesses, services and security nowadays also introduce significant privacy issues. There have been extensive studies on addressing privacy preserving problems in the data mining community but relatively few have provided supervised control over the anonymization process. Preserving both the value and privacy of the data is largely a non‐trivial task. We present the design and evaluation of a visual interface that assists users in employing commonly used data anonymization techniques for making privacy preserving visualizations. Specifically, we focus on event sequence data due to its vulnerability to privacy concerns. Our interface is designed for data owners to examine potential privacy issues, obfuscate information as suggested by the algorithm and fine‐tune the results per their discretion. Multiple use case scenarios demonstrate the utility of our design. A user study similarly investigates the effectiveness of the privacy preserving strategies. Our results show that using a visual‐based interface is effective for identifying potential privacy issues, for revealing underlying anonymization processes, and for allowing users to balance between data utility and privacy.The inconceivable ability and common practice to collect personal data as well as the power of data‐driven approaches to businesses, services and security nowadays also introduce significant privacy issues. There have been extensive studies on addressing privacy preserving problems in the data mining community but relatively few have provided supervised control over the anonymization process. Preserving both the value and privacy of the data is largely a non‐trivial task. We present the design and evaluation of a visual interface that assists users in employing commonly used data anonymization techniques for making privacy preserving visualizations. Specifically, we focus on event sequence data due to its vulnerability to privacy concerns. Our interface is designed for data owners to examine potential privacy issues, obfuscate information as suggested by the algorithm and fine‐tune the results per their discretion.Item Increasing the Spatial Resolution of BTF Measurement with Scheimpflug Imaging(© 2019 The Eurographics Association and John Wiley & Sons Ltd., 2019) Havran, V.; Hošek, J.; Němcová, Š.; Čáp, J.; Chen, Min and Benes, BedrichWe present an improved way of acquiring spatially varying surface reflectance represented by a bidirectional texture function (BTF). Planar BTF samples are measured as images at several inclination angles which puts constraints on the minimum depth of field of cameras used in the measurement instrument. For standard perspective imaging, we show that the size of a sample measured and the achievable spatial resolution are strongly interdependent and limited by diffraction at the lens' aperture. We provide a formula for this relationship. We overcome the issue of the required depth of field by using Scheimpflug imaging further enhanced by an anamorphic attachment. The proposed optics doubles the spatial resolution of images compared to standard perspective imaging optics. We built an instrument prototype with the proposed optics that is portable and allows for measurement on site. We show rendered images using the visual appearance measured by the instrument prototype.Item Functional Maps Representation On Product Manifolds(© 2019 The Eurographics Association and John Wiley & Sons Ltd., 2019) Rodolà, E.; Lähner, Z.; Bronstein, A. M.; Bronstein, M. M.; Solomon, J.; Chen, Min and Benes, BedrichWe consider the tasks of representing, analysing and manipulating maps between shapes. We model maps as densities over the product manifold of the input shapes; these densities can be treated as scalar functions and therefore are manipulable using the language of signal processing on manifolds. Being a manifold itself, the product space endows the set of maps with a geometry of its own, which we exploit to define map operations in the spectral domain; we also derive relationships with other existing representations (soft maps and functional maps). To apply these ideas in practice, we discretize product manifolds and their Laplace–Beltrami operators, and we introduce localized spectral analysis of the product manifold as a novel tool for map processing. Our framework applies to maps defined between and across 2D and 3D shapes without requiring special adjustment, and it can be implemented efficiently with simple operations on sparse matrices.We consider the tasks of representing, analysing and manipulating maps between shapes. We model maps as densities over the product manifold of the input shapes; these densities can be treated as scalar functions and therefore are manipulable using the language of signal processing on manifolds. Being a manifold itself, the product space endows the set of maps with a geometry of its own, which we exploit to define map operations in the spectral domain; we also derive relationships with other existing representations (soft maps and functional maps). To apply these ideas in practice, we discretize product manifolds and their Laplace–Beltrami operators, and we introduce localized spectral analysis of the product manifold as a novel tool for map processing. Our framework applies to maps defined between and across 2D and 3D shapes without requiring special adjustment, and it can be implemented efficiently with simple operations on sparse matrices.Item Denoising Deep Monte Carlo Renderings(© 2019 The Eurographics Association and John Wiley & Sons Ltd., 2019) Vicini, D.; Adler, D.; Novák, J.; Rousselle, F.; Burley, B.; Chen, Min and Benes, BedrichWe present a novel algorithm to denoise deep Monte Carlo renderings, in which pixels contain multiple colour values, each for a different range of depths. Deep images are a more expressive representation of the scene than conventional flat images. However, since each depth bin receives only a fraction of the flat pixel's samples, denoising the bins is harder due to the less accurate mean and variance estimates. Furthermore, deep images lack a regular structure in depth—the number of depth bins and their depth ranges vary across pixels. This prevents a straightforward application of patch‐based distance metrics frequently used to improve the robustness of existing denoising filters. We address these constraints by combining a flat image‐space non‐local means filter operating on pixel colours with a cross‐bilateral filter operating on auxiliary features (albedo, normal, etc.). Our approach significantly reduces noise in deep images while preserving their structure. To our best knowledge, our algorithm is the first to enable efficient deep‐compositing workflows with denoised Monte Carlo renderings. We demonstrate the performance of our filter on a range of scenes highlighting the challenges and advantages of denoising deep images.Item Visualization of Neural Network Predictions for Weather Forecasting(© 2019 The Eurographics Association and John Wiley & Sons Ltd., 2019) Roesch, Isabelle; Günther, Tobias; Chen, Min and Benes, BedrichRecurrent neural networks are prime candidates for learning evolutions in multi‐dimensional time series data. The performance of such a network is judged by the loss function, which is aggregated into a scalar value that decreases during training. Observing only this number hides the variation that occurs within the typically large training and testing data sets. Understanding these variations is of highest importance to adjust network hyper‐parameters, such as the number of neurons, number of layers or to adjust the training set to include more representative examples. In this paper, we design a comprehensive and interactive system that allows users to study the output of recurrent neural networks on both the complete training data and testing data. We follow a coarse‐to‐fine strategy, providing overviews of annual, monthly and daily patterns in the time series and directly support a comparison of different hyper‐parameter settings. We applied our method to a recurrent convolutional neural network that was trained and tested on 25 years of climate data to forecast meteorological attributes, such as temperature, pressure and wind velocity. We further visualize the quality of the forecasting models, when applied to various locations on the Earth and we examine the combination of several forecasting models.Recurrent neural networks are prime candidates for learning evolutions in multi‐dimensional time series data. We describe a comprehensive and interactive system to visually analyse and compare time series predictions that were generated by convolutional and recurrent neural networks in the context of weather forecasting.Item Realtime Performance‐Driven Physical Simulation for Facial Animation(© 2019 The Eurographics Association and John Wiley & Sons Ltd., 2019) Barrielle, V.; Stoiber, N.; Chen, Min and Benes, BedrichWe present the first realtime method for generating facial animations enhanced by physical simulation from realtime performance capture data. Unlike purely data‐based techniques, our method is able to produce physical effects on the fly through the simulation of volumetric skin behaviour, lip contacts and sticky lips. It remains however practical as it does not require any physical/medical data which are complex to acquire and process, and instead relies only on the input of a blendshapes model. We achieve realtime performance on the CPU by introducing an efficient progressive Projective Dynamics solver to efficiently solve the physical integration steps even when confronted to constantly changing constraints. Also key to our realtime performance is a new Taylor approximation and memoization scheme for the computation of the Singular Value Decompositions required for the simulation of volumetric skin. We demonstrate the applicability of our method by animating blendshape characters from a simple webcam feed .We present the first realtime method for generating facial animations enhanced by physical simulation from realtime performance capture data. Unlike purely data‐based techniques, our method is able to produce physical effects on the fly through the simulation of volumetric skin behaviour, lip contacts and sticky lips. It remains however practical as it does not require any physical/medical data which are complex to acquire and process, and instead relies only on the input of a blendshapes model. We achieve realtime performance on the CPU by introducing an efficient progressive Projective Dynamics solver to efficiently solve the physical integration steps even when confronted to constantly changing constraints. Also key to our realtime performance is a new Taylor approximation and memoization scheme for the computation of the Singular Value Decompositions required for the simulation of volumetric skin. We demonstrate the applicability of our method by animating blendshape characters from a simple webcam feed.Item On Visualizing Continuous Turbulence Scales(© 2019 The Eurographics Association and John Wiley & Sons Ltd., 2019) Liu, Xiaopei; Mishra, Maneesh; Skote, Martin; Fu, Chi‐Wing; Chen, Min and Benes, BedrichTurbulent flows are multi‐scale with vortices spanning a wide range of scales continuously. Due to such complexities, turbulence scales are particularly difficult to analyse and visualize. In this work, we present a novel and efficient optimization‐based method for turbulence structure visualization with scale decomposition directly in the Kolmogorov energy spectrum. To achieve this, we first derive a new analytical objective function based on integration approximation. Using this new formulation, we can significantly improve the efficiency of the underlying optimization process and obtain the desired filter in the Kolmogorov energy spectrum for scale decomposition. More importantly, such a decomposition allows a ‘continuous‐scale visualization’ that enables us to efficiently explore the decomposed turbulence scales and further analyse the turbulence structures in a continuous manner. With our approach, we can present scale visualizations of direct numerical simulation data sets continuously over the scale domain for both isotropic and boundary layer turbulent flows. Compared with previous works on multi‐scale turbulence analysis and visualization, our method is highly flexible and efficient in generating scale decomposition and visualization results. The application of the proposed technique to both isotropic and boundary layer turbulence data sets verifies the capability of our technique to produce desirable scale visualization results.Turbulent flows are multi‐scale with vortices spanning a wide range of scales continuously. Due to such complexities, turbulence scales are particularly difficult to analyse and visualize. In this work, we present a novel and efficient optimization‐based method for turbulence structure visualization with scale decomposition directly in the Kolmogorov energy spectrum. To achieve this, we first derive a new analytical objective function based on integration approximation. Using this new formulation, we can significantly improve the efficiency of the underlying optimization process and obtain the desired filter in the Kolmogorov energy spectrum for scale decomposition. More importantly, such a decomposition allows a ‘continuous‐scale visualization’ that enables us to efficiently explore the decomposed turbulence scales and further analyse the turbulence structures in a continuous manner. With our approach, we can present scale visualizations of direct numerical simulation data sets continuously over the scale domain for both isotropic and boundary layer turbulent flows.Item VisFM: Visual Analysis of Image Feature Matchings(© 2019 The Eurographics Association and John Wiley & Sons Ltd., 2019) Li, Chenhui; Baciu, George; Chen, Min and Benes, BedrichFeature matching is the most basic and pervasive problem in computer vision and it has become a primary component in big data analytics. Many tools have been developed for extracting and matching features in video streams and image frames. However, one of the most basic tools, that is, a tool for simply visualizing matched features for the comparison and evaluation of computer vision algorithms is not generally available, especially when dealing with a large number of matching lines. We introduce VisFM, an integrated visual analysis system for comprehending and exploring image feature matchings. VisFM presents a matching view with an intuitive line bundling to provide useful insights regarding the quality of matched features. VisFM is capable of showing a summarization of the features and matchings through group view to assist domain experts in observing the feature matching patterns from multiple perspectives. VisFM incorporates a series of interactions for exploring the feature data. We demonstrate the visual efficacy of VisFM by applying it to three scenarios. An informal expert feedback, conducted by our collaborator in computer vision, demonstrates how VisFM can be used for comparing and analysing feature matchings when the goal is to improve an image retrieval algorithm.Feature matching is the most basic and pervasive problem in computer vision and it has become a primary component in big data analytics. Many tools have been developed for extracting and matching features in video streams and image frames. However, one of the most basic tools, that is, a tool for simply visualizing matched features for the comparison and evaluation of computer vision algorithms is not generally available, especially when dealing with a large number of matching lines. We introduce VisFM, an integrated visual analysis system for comprehending and exploring image feature matchings. VisFM presents a matching view with an intuitive line bundling to provide useful insights regarding the quality of matched features. VisFM is capable of showing a summarization of the features and matchings through group view to assist domain experts in observing the feature matching patterns from multiple perspectives.Item Learning A Stroke‐Based Representation for Fonts(© 2019 The Eurographics Association and John Wiley & Sons Ltd., 2019) Balashova, Elena; Bermano, Amit H.; Kim, Vladimir G.; DiVerdi, Stephen; Hertzmann, Aaron; Funkhouser, Thomas; Chen, Min and Benes, BedrichDesigning fonts and typefaces is a difficult process for both beginner and expert typographers. Existing workflows require the designer to create every glyph, while adhering to many loosely defined design suggestions to achieve an aesthetically appealing and coherent character set. This process can be significantly simplified by exploiting the similar structure character glyphs present across different fonts and the shared stylistic elements within the same font. To capture these correlations, we propose learning a stroke‐based font representation from a collection of existing typefaces. To enable this, we develop a stroke‐based geometric model for glyphs, a fitting procedure to reparametrize arbitrary fonts to our representation. We demonstrate the effectiveness of our model through a manifold learning technique that estimates a low‐dimensional font space. Our representation captures a wide range of everyday fonts with topological variations and naturally handles discrete and continuous variations, such as presence and absence of stylistic elements as well as slants and weights. We show that our learned representation can be used for iteratively improving fit quality, as well as exploratory style applications such as completing a font from a subset of observed glyphs, interpolating or adding and removing stylistic elements in existing fonts.Item Filtered Quadrics for High‐Speed Geometry Smoothing and Clustering(© 2019 The Eurographics Association and John Wiley & Sons Ltd., 2019) Legrand, Hélène; Thiery, Jean‐Marc; Boubekeur, Tamy; Chen, Min and Benes, BedrichModern 3D capture pipelines produce dense surface meshes at high speed, which challenge geometric operators to process such massive data on‐the‐fly. In particular, aiming at instantaneous feature‐preserving smoothing and clustering disqualifies global variational optimizers and one usually relies on high‐performance parallel kernels based on simple measures performed on the positions and normal vectors associated with the surface vertices. Although these operators are effective on small supports, they fail at properly capturing larger scale surface structures. To cope with this problem, we propose to enrich the surface representation with filtered quadrics, a compact and discriminating range space to guide processing. Compared to normal‐based approaches, this additional vertex attribute significantly improves feature preservation for fast bilateral filtering and mode‐seeking clustering, while exhibiting a linear memory cost in the number of vertices and retaining the simplicity of convolutional filters. In particular, the overall performance of our approach stems from its natural compatibility with modern fine‐grained parallel computing architectures such as graphics processor units (GPU). As a result, filtered quadrics offer a superior ability to handle a broad spectrum of frequencies and preserve large salient structures, delivering meshes on‐the‐fly for interactive and streaming applications, as well as quickly processing large data collections, instrumental in learning‐based geometry analysis.Item Real‐Time Facial Expression Transformation for Monocular RGB Video(© 2019 The Eurographics Association and John Wiley & Sons Ltd., 2019) Ma, L.; Deng, Z.; Chen, Min and Benes, BedrichThis paper describes a novel real‐time end‐to‐end system for facial expression transformation, without the need of any driving source. Its core idea is to directly generate desired and photo‐realistic facial expressions on top of input monocular RGB video. Specifically, an unpaired learning framework is developed to learn the mapping between any two facial expressions in the facial blendshape space. Then, it automatically transforms the source expression in an input video clip to a specified target expression through the combination of automated 3D face construction, the learned bi‐directional expression mapping and automated lip correction. It can be applied to new users without additional training. Its effectiveness is demonstrated through many experiments on faces from live and online video, with different identities, ages, speeches and expressions.This paper describes a novel real‐time end‐to‐end system for facial expression transformation, without the need of any driving source. Its core idea is to directly generate desired and photo‐realistic facial expressions on top of input monocular RGB video. Specifically, an unpaired learning framework is developed to learn the mapping between any two facial expressions in the facial blendshape space. Then, it automatically transforms the source expression in an input video clip to a specified target expression through the combination of automated 3D face construction, the learned bi‐directional expression mapping and automated lip correction. It can be applied to new users without additional training. Its effectiveness is demonstrated through many experiments on faces from live and online video, with different identities, ages, speeches and expressions.Item Flexible Use of Temporal and Spatial Reasoning for Fast and Scalable CPU Broad‐Phase Collision Detection Using KD‐Trees(© 2019 The Eurographics Association and John Wiley & Sons Ltd., 2019) Serpa, Ygor Rebouças; Rodrigues, Maria Andréia Formico; Chen, Min and Benes, BedrichRealistic computer simulations of physical elements such as rigid and deformable bodies, particles and fractures are commonplace in the modern world. In these simulations, the broad‐phase collision detection plays an important role in ensuring that simulations can scale with the number of objects. In these applications, several degrees of motion coherency, distinct spatial distributions and different types of objects exist; however, few attempts have been made at a generally applicable solution for their broad phase. In this regard, this work presents a novel broad‐phase collision detection algorithm based upon a hybrid SIMD optimized KD‐Tree and sweep‐and‐prune, aimed at general applicability. Our solution is optimized for several objects distributions, degrees of motion coherence and varying object sizes. These features are made possible by an efficient and idempotent two‐step tree optimization algorithm and by selectively enabling coherency optimizations. We have tested our solution under varying scenario setups and compared it to other solutions available in the literature and industry, up to a million simulated objects. The results show that our solution is competitive, with average performance values two to three times better than those achieved by other state‐of‐the‐art AABB‐based CPU solutions.Realistic computer simulations of physical elements such as rigid and deformable bodies, particles and fractures are commonplace in the modern world. In these simulations, the broad‐phase collision detection plays an important role in ensuring that simulations can scale with the number of objects. In these applications, several degrees of motion coherency, distinct spatial distributions and different types of objects exist; however, few attempts have been made at a generally applicable solution for their broad phase. In this regard, this work presents a novel broad‐phase collision detection algorithm based upon a hybrid SIMD optimized KD‐Tree and sweep‐and‐prune, aimed at general applicability. Our solution is optimized for several objects distributions, degrees of motion coherence and varying object sizes. These features are made possible by an efficient and idempotent two‐step tree optimization algorithm and by selectively enabling coherency optimizations.Item MegaViews: Scalable Many‐View Rendering With Concurrent Scene‐View Hierarchy Traversal(© 2019 The Eurographics Association and John Wiley & Sons Ltd., 2019) Kol, Timothy R.; Bauszat, Pablo; Lee, Sungkil; Eisemann, Elmar; Chen, Min and Benes, BedrichWe present a scalable solution to render complex scenes from a large amount of viewpoints. While previous approaches rely either on a scene or a view hierarchy to process multiple elements together, we make full use of both, enabling sublinear performance in terms of views and scene complexity. By concurrently traversing the hierarchies, we efficiently find shared information among views to amortize rendering costs. One example application is many‐light global illumination. Our solution accelerates shadow map generation for virtual point lights, whose number can now be raised to over a million while maintaining interactive rates.Item FitConnect: Connecting Noisy 2D Samples by Fitted Neighbourhoods(© 2019 The Eurographics Association and John Wiley & Sons Ltd., 2019) Ohrhallinger, S.; Wimmer, M.; Chen, Min and Benes, BedrichWe propose a parameter‐free method to recover manifold connectivity in unstructured 2D point clouds with high noise in terms of the local feature size. This enables us to capture the features which emerge out of the noise. To achieve this, we extend the reconstruction algorithm , which connects samples to two (noise‐free) neighbours and has been proven to output a manifold for a relaxed sampling condition. Applying this condition to noisy samples by projecting their ‐nearest neighbourhoods onto local circular fits leads to multiple candidate neighbour pairs and thus makes connecting them consistently an NP‐hard problem. To solve this efficiently, we design an algorithm that searches that solution space iteratively on different scales of . It achieves linear time complexity in terms of point count plus quadratic time in the size of noise clusters. Our algorithm extends seamlessly to connect both samples with and without noise, performs as local as the recovered features and can output multiple open or closed piecewise curves. Incidentally, our method simplifies the output geometry by eliminating all but a representative point from noisy clusters. Since local neighbourhood fits overlap consistently, the resulting connectivity represents an ordering of the samples along a manifold. This permits us to simply blend the local fits for denoising with the locally estimated noise extent. Aside from applications like reconstructing silhouettes of noisy sensed data, this lays important groundwork to improve surface reconstruction in 3D. Our open‐source algorithm is available online.We propose a parameter‐free method to recover manifold connectivity in unstructured 2D point clouds with high noise in terms of the local feature size. This enables us to capture the features which emerge out of the noise. To achieve this, we extend the reconstruction algorithm , which connects samples to two (noise‐free) neighbours and has been proven to output a manifold for a relaxed sampling condition. Applying this condition to noisy samples by projecting their ‐nearest neighbourhoods onto local circular fits leads to multiple candidate neighbour pairs and thus makes connecting them consistently an NP‐hard problem. To solve this efficiently, we design an algorithm that searches that solution space iteratively on different scales of . It achieves linear time complexity in terms of point count plus quadratic time in the size of noise clusters.Item A Survey of Information Visualization Books(© 2019 The Eurographics Association and John Wiley & Sons Ltd., 2019) Rees, D.; Laramee, R. S.; Chen, Min and Benes, BedrichInformation visualization is a rapidly evolving field with a growing volume of scientific literature and texts continually published. To keep abreast of the latest developments in the domain, survey papers and state‐of‐the‐art reviews provide valuable tools for managing the large quantity of scientific literature. Recently, a survey of survey papers was published to keep track of the quantity of refereed survey papers in information visualization conferences and journals. However, no such resources exist to inform readers of the large volume of books being published on the subject, leaving the possibility of valuable knowledge being overlooked. We present the first literature survey of information visualization books that addresses this challenge by surveying the large volume of books on the topic of information visualization and visual analytics. This unique survey addresses some special challenges associated with collections of books (as opposed to research papers) including searching, browsing and cost. This paper features a novel two‐level classification based on both books and chapter topics examined in each book, enabling the reader to quickly identify to what depth a topic of interest is covered within a particular book. Readers can use this survey to identify the most relevant book for their needs amongst a quickly expanding collection. In indexing the landscape of information visualization books, this survey provides a valuable resource to both experienced researchers and newcomers in the data visualization discipline.We present the first literature survey of information visualization books, providing a resource to both experienced researchers and newcomers in the data visualization discipline. This paper features a novel two‐level classification based on both books and chapter topics examined in each book, enabling the reader to quickly identify to what depth a topic of interest is covered within a book. Readers can use this survey to identify the most relevant book for their needs amongst a quickly expanding collection.Item Shading‐Based Surface Recovery Using Subdivision‐Based Representation(© 2019 The Eurographics Association and John Wiley & Sons Ltd., 2019) Deng, Teng; Zheng, Jianmin; Cai, Jianfei; Cham, Tat‐Jen; Chen, Min and Benes, BedrichThis paper presents subdivision‐based representations for both lighting and geometry in shape‐from‐shading. A very recent shading‐based method introduced a per‐vertex overall illumination model for surface reconstruction, which has advantage of conveniently handling complicated lighting condition and avoiding explicit estimation of visibility and varied albedo. However, due to its discrete nature, the per‐vertex overall illumination requires a large amount of memory and lacks intrinsic coherence. To overcome these problems, in this paper we propose to use classic subdivision to define the basic smooth lighting function and surface, and introduce additional independent variables into the subdivision to adaptively model sharp changes of illumination and geometry. Compared to previous works, the new model not only preserves the merits of the per‐vertex illumination model, but also greatly reduces the number of variables required in surface recovery and intrinsically regularizes the illumination vectors and the surface. These features make the new model very suitable for multi‐view stereo surface reconstruction under general, unknown illumination condition. Particularly, a variational surface reconstruction method built upon the subdivision representations for lighting and geometry is developed. The experiments on both synthetic and real‐world data sets have demonstrated that the proposed method can achieve memory efficiency and improve surface detail recovery.This paper presents subdivision‐based representations for both lighting and geometry in shape‐from‐shading. A very recent shading‐based method introduced a per‐vertex overall illumination model for surface reconstruction, which has advantage of conveniently handling complicated lighting condition and avoiding explicit estimation of visibility and varied albedo. However, due to its discrete nature, the per‐vertex overall illumination requires a large amount of memory and lacks intrinsic coherence. To overcome these problems, in this paper we propose to use classic subdivision to define the basic smooth lighting function and surface, and introduce additional independent variables into the subdivision to adaptively model sharp changes of illumination and geometry. Compared to previous works, the new model not only preserves the merits of the per‐vertex illumination model, but also greatly reduces the number of variables required in surface recovery and intrinsically regularizes the illumination vectors and the surface. These features make the new model very suitable for multi‐view stereo surface reconstruction under general, unknown illumination condition. Particularly, a variational surface reconstruction method built upon the subdivision representations for lighting and geometry is developed. The experiments on both synthetic and real‐world data sets have demonstrated that the proposed method can achieve memory efficiency and improve surface detail recovery.
- «
- 1 (current)
- 2
- 3
- »