Neural Resampling with Optimized Candidate Allocation

dc.contributor.authorRath, Alexanderen_US
dc.contributor.authorManzi, Marcoen_US
dc.contributor.authorWeiss, Sebastianen_US
dc.contributor.authorPortenier, Tizianoen_US
dc.contributor.authorSalehi, Farnooden_US
dc.contributor.authorHadadan, Saeeden_US
dc.contributor.authorPapas, Mariosen_US
dc.contributor.editorWang, Beibeien_US
dc.contributor.editorWilkie, Alexanderen_US
dc.date.accessioned2025-06-20T07:48:51Z
dc.date.available2025-06-20T07:48:51Z
dc.date.issued2025
dc.description.abstractWe propose a novel framework that accelerates Monte Carlo rendering with the help of machine learning. Unlike previous works that learn parametric distributions that can be sampled directly, our method learns the 5-dimensional unnormalized incident radiance field and samples its product with the material response (BRDF) through Resampled Importance Sampling. This allows for more flexible network architectures that can be used to improve upon existing path guiding approaches and can also be reused for other tasks such as radiance caching. To reduce the cost of resampling, we derive optimized spatially-varying candidate counts to maximize the efficiency of the render process. We designed our method to accelerate CPU production renders by benefiting from otherwise idle GPU resources without need of intrusive changes to the renderer. We compare our approach against state-of-the-art path guiding methods, both neural and non-neural, and demonstrate significant variance reduction at equal render times on production scenes.en_US
dc.description.sectionheadersSampling and Guiding
dc.description.seriesinformationEurographics Symposium on Rendering
dc.identifier.doi10.2312/sr.20251181
dc.identifier.isbn978-3-03868-292-9
dc.identifier.issn1727-3463
dc.identifier.pages12 pages
dc.identifier.urihttps://doi.org/10.2312/sr.20251181
dc.identifier.urihttps://diglib.eg.org/handle/10.2312/sr20251181
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleNeural Resampling with Optimized Candidate Allocationen_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
sr20251181.pdf
Size:
51.61 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
paper1106_mm2.zip
Size:
160.9 MB
Format:
Zip file