Robotic Painting using Semantic Image Abstraction

dc.contributor.authorStroh, Michaelen_US
dc.contributor.authorPaetzold, Patricken_US
dc.contributor.authorBerio, Danielen_US
dc.contributor.authorLeymarie, Frederic Folen_US
dc.contributor.authorKehlbeck, Rebeccaen_US
dc.contributor.authorDeussen, Oliveren_US
dc.contributor.editorBerio, Danielen_US
dc.contributor.editorBruckert, Alexandreen_US
dc.date.accessioned2025-05-09T09:43:57Z
dc.date.available2025-05-09T09:43:57Z
dc.date.issued2025
dc.description.abstractWe present a novel image segmentation and abstraction pipeline tailored to robot painting applications. We address the unique challenges of realizing digital abstractions as physical artistic renderings. Our approach generates adaptive, semantics-based abstractions that balance aesthetic appeal, structural coherence, and practical constraints inherent to robotic systems. By integrating panoptic segmentation with color-based over-segmentation, we partition images into meaningful regions corresponding to semantic objects while providing customizable abstraction levels we optimize for robotic realization. We employ saliency maps and color difference metrics to support automatic parameter selection to guide a merging process that detects and preserves critical object boundaries while simplifying less salient areas. Graph-based community detection further refines the abstraction by grouping regions based on local connectivity and semantic coherence. These abstractions enable robotic systems to create paintings on real canvases with a controlled level of detail and abstraction.en_US
dc.description.sectionheadersPosters
dc.description.seriesinformationACM/EG Expressive Symposium - WICED: Eurographics Workshop on Intelligent Cinematography and Editing - Artworks, Posters, Demos
dc.identifier.doi10.2312/exw.20251070
dc.identifier.isbn978-3-03868-272-1
dc.identifier.pages4 pages
dc.identifier.urihttps://doi.org/10.2312/exw.20251070
dc.identifier.urihttps://diglib.eg.org/handle/10.2312/exw20251070
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Computing methodologies → Non-photorealistic rendering; Image processing
dc.subjectComputing methodologies → Non
dc.subjectphotorealistic rendering
dc.subjectImage processing
dc.titleRobotic Painting using Semantic Image Abstractionen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
exw20251070.pdf
Size:
5.21 MB
Format:
Adobe Portable Document Format