LearnClusterVis: A Framework for Clustering-driven Visual Analysis of Programming Learners' Learning Process

dc.contributor.authorBai, Qishuoen_US
dc.contributor.authorWu, Zhiyuanen_US
dc.contributor.authorLiu, Yinuoen_US
dc.contributor.authorYang, Yutongen_US
dc.contributor.authorCao, Junxiangen_US
dc.contributor.authorDong, Xiaojuen_US
dc.contributor.editorAurisano, Jillianen_US
dc.contributor.editorLaramee, Robert S.en_US
dc.contributor.editorNobre, Carolinaen_US
dc.date.accessioned2025-05-26T06:33:46Z
dc.date.available2025-05-26T06:33:46Z
dc.date.issued2025
dc.description.abstractThe rapid growth of online grading systems (commonly referred to as online judge systems in programming education) provides valuable opportunities to analyze programming learners' processes, but the complexity of such datasets poses significant challenges for instructors lacking specialized analytical techniques. Furthermore, it remains a significant challenge for instructors to effectively identify priority learner groups that require targeted attention and to make informed educational decisions within classroom contexts. To address these challenges, we introduce LearnClusterVis, a clustering-driven visual analysis framework designed to uncover behavioral patterns and developmental trajectories in programming learners' activities. LearnClusterVis is highly extensible and can be applied to various online grading systems. LearnClusterVis leverages learners' submission records to generate customizable visual analysis interfaces, enabling instructors to explore learning patterns, identify learner clusters, monitor progress, deliver personalized interventions, and evaluate the rationality of questions across knowledge domains. The case studies, which implemented the framework using data from two distinct online grading systems, demonstrate its effectiveness and scalability.en_US
dc.description.sectionheadersEducation Papers Session 2
dc.description.seriesinformationEuroVis 2025 - Education Papers
dc.identifier.doi10.2312/eved.20251018
dc.identifier.isbn978-3-03868-273-8
dc.identifier.pages10 pages
dc.identifier.urihttps://doi.org/10.2312/eved.20251018
dc.identifier.urihttps://diglib.eg.org/handle/10.2312/eved20251018
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Human-centered computing → Visual analytics; Visualization systems and tools
dc.subjectHuman centered computing computing → Visual analytics
dc.subjectVisualization systems and tools
dc.titleLearnClusterVis: A Framework for Clustering-driven Visual Analysis of Programming Learners' Learning Processen_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
eved20251018.pdf
Size:
9.17 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
1018-file-i8.mp4
Size:
170.89 MB
Format:
Video MP4