Supervised Models to Support Investigations of Ancient Coins
dc.contributor.author | Naso, Luca | en_US |
dc.contributor.author | Sole, Lavinia | en_US |
dc.contributor.author | Patti, Andrea | en_US |
dc.contributor.author | Armetta, Francesco | en_US |
dc.contributor.author | Celso, Fabrizio Lo | en_US |
dc.contributor.author | Patatu, Wladimiro Carlo | en_US |
dc.contributor.author | Saladino, Maria Luisa | en_US |
dc.contributor.editor | Campana, Stefano | en_US |
dc.contributor.editor | Ferdani, Daniele | en_US |
dc.contributor.editor | Graf, Holger | en_US |
dc.contributor.editor | Guidi, Gabriele | en_US |
dc.contributor.editor | Hegarty, Zackary | en_US |
dc.contributor.editor | Pescarin, Sofia | en_US |
dc.contributor.editor | Remondino, Fabio | en_US |
dc.date.accessioned | 2025-09-05T20:57:32Z | |
dc.date.available | 2025-09-05T20:57:32Z | |
dc.date.issued | 2025 | |
dc.description.abstract | This paper presents the initial findings of the ongoing MML-ARCH project, which uses machine learning (ML) algorithms to create predictive, supervised models for analyzing archaeological, numismatic and physicochemical data. Specifically, the study proposes using convolutional neural network (CNN) algorithms to predict the minting year of ancient Roman Republican coins based on the iconography on the obverse and reverse. | en_US |
dc.description.sectionheaders | Digital Technologies for CHANGES (CHANGES SESSION) - Part 1 | |
dc.description.seriesinformation | Digital Heritage | |
dc.identifier.doi | 10.2312/dh.20253153 | |
dc.identifier.isbn | 978-3-03868-277-6 | |
dc.identifier.pages | 3 pages | |
dc.identifier.uri | https://doi.org/10.2312/dh.20253153 | |
dc.identifier.uri | https://diglib.eg.org/handle/10.2312/dh20253153 | |
dc.publisher | The Eurographics Association | en_US |
dc.rights | Attribution 4.0 International License | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject | CCS Concepts: Computing methodologies → Supervised learning by regression; Applied computing → Archaeology | |
dc.subject | Computing methodologies → Supervised learning by regression | |
dc.subject | Applied computing → Archaeology | |
dc.title | Supervised Models to Support Investigations of Ancient Coins | en_US |
Files
Original bundle
1 - 1 of 1