Integrating Layer-Wise Relevance Propagation with Stable Diffusion for Enhanced Interpretability

dc.contributor.authorAuman, Christianen_US
dc.contributor.authorBhati, Deepshikhaen_US
dc.contributor.authorArquilla, Kyleen_US
dc.contributor.authorNeha, Fnuen_US
dc.contributor.authorGuercio, Angelaen_US
dc.contributor.editorSchulz, Hans-Jörgen_US
dc.contributor.editorVillanova, Annaen_US
dc.date.accessioned2025-05-26T06:30:50Z
dc.date.available2025-05-26T06:30:50Z
dc.date.issued2025
dc.description.abstractDiffusion-based generative models, such as Stable Diffusion and DALL-E, have revolutionized artificial intelligence by enabling high-quality image generation from textual descriptions. Despite their success, these models raise ethical concerns, such as style appropriation and misuse, closely tied to the interpretability and transparency of the underlying mechanisms. This paper introduces a framework integrating Layer-wise Relevance Propagation (LRP) into the Stable Diffusion model to enhance interpretability. LRP assigns relevance scores to specific elements of textual prompts, allowing users to understand and visualize how input text influences image generation. We also present an interactive web-based visualization tool that supports intuitive exploration of diffusion processes. By improving interpretability, this approach fosters responsible use of generative AI technologies. A user study involving 35 participants demonstrates the tool's accessibility and effectiveness.en_US
dc.description.sectionheadersVisual Analytics Applications and Systems
dc.description.seriesinformationEuroVis Workshop on Visual Analytics (EuroVA)
dc.identifier.doi10.2312/eurova.20251102
dc.identifier.isbn978-3-03868-283-7
dc.identifier.issn2664-4487
dc.identifier.pages6 pages
dc.identifier.urihttps://doi.org/10.2312/eurova.20251102
dc.identifier.urihttps://diglib.eg.org/handle/10.2312/eurova20251102
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Computing methodologies → Generative AI; Diffusion Models; Stable Diffusion; Layer-wise Relevance Propagation; AI Transparency; Human-centered computing → Visual analytics
dc.subjectComputing methodologies → Generative AI
dc.subjectDiffusion Models
dc.subjectStable Diffusion
dc.subjectLayer
dc.subjectwise Relevance Propagation
dc.subjectAI Transparency
dc.subjectHuman centered computing → Visual analytics
dc.titleIntegrating Layer-Wise Relevance Propagation with Stable Diffusion for Enhanced Interpretabilityen_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
eurova20251102.pdf
Size:
7.31 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
9856-file-i8.mp4
Size:
238.69 MB
Format:
Video MP4
Collections