FAHNet: Accurate and Robust Normal Estimation for Point Clouds via Frequency-Aware Hierarchical Geometry

dc.contributor.authorWang, Chengweien_US
dc.contributor.authorWu, Wenmingen_US
dc.contributor.authorFei, Yueen_US
dc.contributor.authorZhang, Gaofengen_US
dc.contributor.authorZheng, Lipingen_US
dc.contributor.editorChristie, Marcen_US
dc.contributor.editorPietroni, Nicoen_US
dc.contributor.editorWang, Yu-Shuenen_US
dc.date.accessioned2025-10-07T05:03:13Z
dc.date.available2025-10-07T05:03:13Z
dc.date.issued2025
dc.description.abstractPoint cloud normal estimation underpins many 3D vision and graphics applications. Precise normal estimation in regions of sharp curvature and high-frequency variation remains a major bottleneck; existing learning-based methods still struggle to isolate fine geometry details under noise and uneven sampling. We present FAHNet, a novel frequency-aware hierarchical network that precisely tackles those challenges. Our Frequency-Aware Hierarchical Geometry (FAHG) feature extraction module selectively amplifies and merges cross-scale cues, ensuring that both fine-grained local features and sharp structures are faithfully represented. Crucially, a dedicated Frequency-Aware geometry enhancement (FA) branch intensifies sensitivity to abrupt normal transitions and sharp features, preventing the common over-smoothing limitation. Extensive experiments on synthetic benchmarks (PCPNet, FamousShape) and real-world scans (SceneNN) demonstrate that FAHNet outperforms state-of-the-art approaches in normal estimation accuracy. Ablation studies further quantify the contribution of each component, and downstream surface reconstruction results validate the practical impact of our design.en_US
dc.description.number7
dc.description.sectionheadersCreating and Processing Point Clouds
dc.description.seriesinformationComputer Graphics Forum
dc.description.volume44
dc.identifier.doi10.1111/cgf.70264
dc.identifier.issn1467-8659
dc.identifier.pages11 pages
dc.identifier.urihttps://doi.org/10.1111/cgf.70264
dc.identifier.urihttps://diglib.eg.org/handle/10.1111/cgf70264
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.subjectCCS Concepts: Computing methodologies → Point-based models; Parametric curve and surface models
dc.subjectComputing methodologies → Point
dc.subjectbased models
dc.subjectParametric curve and surface models
dc.titleFAHNet: Accurate and Robust Normal Estimation for Point Clouds via Frequency-Aware Hierarchical Geometryen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
cgf70264.pdf
Size:
23.28 MB
Format:
Adobe Portable Document Format
Collections