Complex Modulation Computer-Generated Hologram with Occlusion Effect by a Fast Hybrid Point-source/Wave-field Approach
Loading...
Date
2015
Authors
Gilles, Antonin
Gioia, Patrick
Cozot, Rémi
Morin, Luce
Gioia, Patrick
Cozot, Rémi
Morin, Luce
Journal Title
Journal ISSN
Volume Title
Publisher
The Eurographics Association
Abstract
We propose a fast Computer-Generated Hologram (CGH) computation method with occlusion effect based on a hybrid point-source/wave-field approach. Whereas previously proposed methods tried to reduce the computational complexity of the point-source or the wave-field approaches independently, the proposed method uses the two approaches together and therefore takes advantages from both of them. Our algorithm consists of three steps. First, the 3D scene is sliced into several depth layers parallel to the hologram plane. Then, light scattered by the scene is propagated and shielded from one layer to another, starting from the farthest layer. For each layer, light propagation and light shielding are performed using either a point-source or a wave-field approach according to a threshold criterion on the number of points within the layer. Finally, we compute light propagation from the nearest layer to the hologram plane in order to obtain the final CGH. Experimental results reveal that this combination of approaches does not produce any visible artifact and outperforms both the point-source and wavefield approaches.
Description
@inproceedings{10.2312:pg.20151277,
booktitle = {Pacific Graphics Short Papers},
editor = {Stam, Jos and Mitra, Niloy J. and Xu, Kun},
title = {{Complex Modulation Computer-Generated Hologram with Occlusion Effect by a Fast Hybrid Point-source/Wave-field Approach}},
author = {Gilles, Antonin and Gioia, Patrick and Cozot, Rémi and Morin, Luce},
year = {2015},
publisher = {The Eurographics Association},
ISBN = {978-3-905674-96-5},
DOI = {10.2312/pg.20151277}
}