VCBM 2020: Eurographics Workshop on Visual Computing for Biology and Medicine
Permanent URI for this collection
Browse
Browsing VCBM 2020: Eurographics Workshop on Visual Computing for Biology and Medicine by Subject "Information visualization"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Visual Analysis of Multivariate Intensive Care Surveillance Data(The Eurographics Association, 2020) Brich, Nicolas; Schulz, Christoph; Peter, Jörg; Klingert, Wilfried; Schenk, Martin; Weiskopf, Daniel; Krone, Michael; Kozlíková, Barbora and Krone, Michael and Smit, Noeska and Nieselt, Kay and Raidou, Renata GeorgiaWe present an approach for visual analysis of high-dimensional measurement data with varying sampling rates in the context of an experimental post-surgery study performed on a porcine surrogate model. The study aimed at identifying parameters suitable for diagnosing and prognosticating the volume state-a crucial and difficult task in intensive care medicine. In intensive care, most assessments not only depend on a single measurement but a plethora of mixed measurements over time. Even for trained experts, efficient and accurate analysis of such multivariate time-dependent data remains a challenging task. We present a linked-view post hoc visual analysis application that reduces data complexity by combining projection-based time curves for overview with small multiples for details on demand. Our approach supports not only the analysis of individual patients but also the analysis of ensembles by adapting existing techniques using non-parametric statistics. We evaluated the effectiveness and acceptance of our application through expert feedback with domain scientists from the surgical department using real-world data: the results show that our approach allows for detailed analysis of changes in patient state while also summarizing the temporal development of the overall condition. Furthermore, the medical experts believe that our method can be transferred from medical research to the clinical context, for example, to identify the early onset of a sepsis.Item VRIDAA: Virtual Reality Platform for Training and Planning Implantations of Occluder Devices in Left Atrial Appendages(The Eurographics Association, 2020) Medina, Elodie; Aguado, Ainhoa M.; Mill, Jordi; Freixa, Xavier; Arzamendi, Dabit; Yagüe, Carlos; Camara, Oscar; Kozlíková, Barbora and Krone, Michael and Smit, Noeska and Nieselt, Kay and Raidou, Renata GeorgiaPersonalized anatomical information of the heart is usually obtained from the visual analysis of patient-specific medical images with standard multiplanar reconstruction (MPR) of 2D orthogonal slices, volume rendering and surface mesh views. Commonly, medical data is visualized in 2D flat screens, thus hampering the understanding of 3D complex anatomical details, including incorrect depth/scaling perception, which is critical for some cardiac interventions such as medical device implantations. Virtual reality (VR) is becoming a valid complementary technology overcoming some of the limitations of conventional visualization techniques and allowing an enhanced and fully interactive exploration of human anatomy. In this work, we present VRIDAA, a VR-based platform for the visualization of patient-specific cardiac geometries and the virtual implantation of left atrial appendage occluder (LAAO) devices. It includes different visualization and interaction modes to jointly inspect 3D LA geometries and different LAAO devices, MPR 2D imaging slices, several landmarks and morphological parameters relevant to LAAO, among other functionalities. The platform was designed and tested by two interventional cardiologists and LAAO researchers, obtaining very positive user feedback about its potential, highlighting VRIDAA as a source of motivation for trainees and its usefulness to better understand the required surgical approach before the intervention.