Volume 42 (2023)
Permanent URI for this community
Browse
Browsing Volume 42 (2023) by Subject "based rendering"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item CP-NeRF: Conditionally Parameterized Neural Radiance Fields for Cross-scene Novel View Synthesis(The Eurographics Association and John Wiley & Sons Ltd., 2023) He, Hao; Liang, Yixun; Xiao, Shishi; Chen, Jierun; Chen, Yingcong; Chaine, Raphaëlle; Deng, Zhigang; Kim, Min H.Neural radiance fields (NeRF) have demonstrated a promising research direction for novel view synthesis. However, the existing approaches either require per-scene optimization that takes significant computation time or condition on local features which overlook the global context of images. To tackle this shortcoming, we propose the Conditionally Parameterized Neural Radiance Fields (CP-NeRF), a plug-in module that enables NeRF to leverage contextual information from different scales. Instead of optimizing the model parameters of NeRFs directly, we train a Feature Pyramid hyperNetwork (FPN) that extracts view-dependent global and local information from images within or across scenes to produce the model parameters. Our model can be trained end-to-end with standard photometric loss from NeRF. Extensive experiments demonstrate that our method can significantly boost the performance of NeRF, achieving state-of-the-art results in various benchmark datasets.Item Interactive Control over Temporal Consistency while Stylizing Video Streams(The Eurographics Association and John Wiley & Sons Ltd., 2023) Shekhar, Sumit; Reimann, Max; Hilscher, Moritz; Semmo, Amir; Döllner, Jürgen; Trapp, Matthias; Ritschel, Tobias; Weidlich, AndreaImage stylization has seen significant advancement and widespread interest over the years, leading to the development of a multitude of techniques. Extending these stylization techniques, such as Neural Style Transfer (NST), to videos is often achieved by applying them on a per-frame basis. However, per-frame stylization usually lacks temporal consistency, expressed by undesirable flickering artifacts. Most of the existing approaches for enforcing temporal consistency suffer from one or more of the following drawbacks: They (1) are only suitable for a limited range of techniques, (2) do not support online processing as they require the complete video as input, (3) cannot provide consistency for the task of stylization, or (4) do not provide interactive consistency control. Domain-agnostic techniques for temporal consistency aim to eradicate flickering completely but typically disregard aesthetic aspects. For stylization tasks, however, consistency control is an essential requirement as a certain amount of flickering adds to the artistic look and feel. Moreover, making this control interactive is paramount from a usability perspective. To achieve the above requirements, we propose an approach that stylizes video streams in real-time at full HD resolutions while providing interactive consistency control. We develop a lite optical-flow network that operates at 80 Frames per second (FPS) on desktop systems with sufficient accuracy. Further, we employ an adaptive combination of local and global consistency features and enable interactive selection between them. Objective and subjective evaluations demonstrate that our method is superior to state-of-the-art video consistency approaches. maxreimann.github.io/stream-consistencyItem NEnv: Neural Environment Maps for Global Illumination(The Eurographics Association and John Wiley & Sons Ltd., 2023) Rodriguez-Pardo, Carlos; Fabre, Javier; Garces, Elena; Lopez-Moreno, Jorge; Ritschel, Tobias; Weidlich, AndreaEnvironment maps are commonly used to represent and compute far-field illumination in virtual scenes. However, they are expensive to evaluate and sample from, limiting their applicability to real-time rendering. Previous methods have focused on compression through spherical-domain approximations, or on learning priors for natural, day-light illumination. These hinder both accuracy and generality, and do not provide the probability information required for importance-sampling Monte Carlo integration. We propose NEnv, a deep-learning fully-differentiable method, capable of compressing and learning to sample from a single environment map. NEnv is composed of two different neural networks: A normalizing flow, able to map samples from uniform distributions to the probability density of the illumination, also providing their corresponding probabilities; and an implicit neural representation which compresses the environment map into an efficient differentiable function. The computation time of environment samples with NEnv is two orders of magnitude less than with traditional methods. NEnv makes no assumptions regarding the content (i.e. natural illumination), thus achieving higher generality than previous learning-based approaches. We share our implementation and a diverse dataset of trained neural environment maps, which can be easily integrated into existing rendering engines.Item Neural Impostor: Editing Neural Radiance Fields with Explicit Shape Manipulation(The Eurographics Association and John Wiley & Sons Ltd., 2023) Liu, Ruiyang; Xiang, Jinxu; Zhao, Bowen; Zhang, Ran; Yu, Jingyi; Zheng, Changxi; Chaine, Raphaëlle; Deng, Zhigang; Kim, Min H.Neural Radiance Fields (NeRF) have significantly advanced the generation of highly realistic and expressive 3D scenes. However, the task of editing NeRF, particularly in terms of geometry modification, poses a significant challenge. This issue has obstructed NeRF's wider adoption across various applications. To tackle the problem of efficiently editing neural implicit fields, we introduce Neural Impostor, a hybrid representation incorporating an explicit tetrahedral mesh alongside a multigrid implicit field designated for each tetrahedron within the explicit mesh. Our framework bridges the explicit shape manipulation and the geometric editing of implicit fields by utilizing multigrid barycentric coordinate encoding, thus offering a pragmatic solution to deform, composite, and generate neural implicit fields while maintaining a complex volumetric appearance. Furthermore, we propose a comprehensive pipeline for editing neural implicit fields based on a set of explicit geometric editing operations. We show the robustness and adaptability of our system through diverse examples and experiments, including the editing of both synthetic objects and real captured data. Finally, we demonstrate the authoring process of a hybrid synthetic-captured object utilizing a variety of editing operations, underlining the transformative potential of Neural Impostor in the field of 3D content creation and manipulation.Item PVP: Personalized Video Prior for Editable Dynamic Portraits using StyleGAN(The Eurographics Association and John Wiley & Sons Ltd., 2023) Lin, Kai-En; Trevithick, Alex; Cheng, Keli; Sarkis, Michel; Ghafoorian, Mohsen; Bi, Ning; Reitmayr, Gerhard; Ramamoorthi, Ravi; Ritschel, Tobias; Weidlich, AndreaPortrait synthesis creates realistic digital avatars which enable users to interact with others in a compelling way. Recent advances in StyleGAN and its extensions have shown promising results in synthesizing photorealistic and accurate reconstruction of human faces. However, previous methods often focus on frontal face synthesis and most methods are not able to handle large head rotations due to the training data distribution of StyleGAN. In this work, our goal is to take as input a monocular video of a face, and create an editable dynamic portrait able to handle extreme head poses. The user can create novel viewpoints, edit the appearance, and animate the face. Our method utilizes pivotal tuning inversion (PTI) to learn a personalized video prior from a monocular video sequence. Then we can input pose and expression coefficients to MLPs and manipulate the latent vectors to synthesize different viewpoints and expressions of the subject. We also propose novel loss functions to further disentangle pose and expression in the latent space. Our algorithm shows much better performance over previous approaches on monocular video datasets, and it is also capable of running in real-time at 54 FPS on an RTX 3080.Item Robust Distribution-aware Color Correction for Single-shot Images(The Eurographics Association and John Wiley & Sons Ltd., 2023) Dhillon, Daljit Singh J.; Joshi, Parisha; Baron, Jessica; Patterson, Eric K.; Chaine, Raphaëlle; Deng, Zhigang; Kim, Min H.Color correction for photographed images is an ill-posed problem. It is also a crucial initial step towards material acquisition for inverse rendering methods or pipelines. Several state-of-the-art methods rely on reducing color differences for imaged reference color chart blocks of known color values to devise or optimize their solution. In this paper, we first establish through simulations the limitation of this minimality criteria which in principle results in overfitting. Next, we study and propose a few spatial distribution measures to augment the evaluation criteria. Thereafter, we propose a novel patch-based, white-point centric approach that processes luminance and chrominance information separately to improve on the color matching task. We compare our method qualitatively with several state-of-the art methods using our augmented evaluation criteria along with quantitative examinations. Finally, we perform rigorous experiments and demonstrate results to clearly establish the benefits of our proposed method.