Volume 42 (2023)
Permanent URI for this community
Browse
Browsing Volume 42 (2023) by Subject "Artificial intelligence"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Deep Deformation Detail Synthesis for Thin Shell Models(The Eurographics Association and John Wiley & Sons Ltd., 2023) Chen, Lan; Gao, Lin; Yang, Jie; Xu, Shibiao; Ye, Juntao; Zhang, Xiaopeng; Lai, Yu-Kun; Memari, Pooran; Solomon, JustinIn physics-based cloth animation, rich folds and detailed wrinkles are achieved at the cost of expensive computational resources and huge labor tuning. Data-driven techniques make efforts to reduce the computation significantly by utilizing a preprocessed database. One type of methods relies on human poses to synthesize fitted garments, but these methods cannot be applied to general cloth animations. Another type of methods adds details to the coarse meshes obtained through simulation, which does not have such restrictions. However, existing works usually utilize coordinate-based representations which cannot cope with large-scale deformation, and requires dense vertex correspondences between coarse and fine meshes. Moreover, as such methods only add details, they require coarse meshes to be sufficiently close to fine meshes, which can be either impossible, or require unrealistic constraints to be applied when generating fine meshes. To address these challenges, we develop a temporally and spatially as-consistent-as-possible deformation representation (named TS-ACAP) and design a DeformTransformer network to learn the mapping from low-resolution meshes to ones with fine details. This TS-ACAP representation is designed to ensure both spatial and temporal consistency for sequential large-scale deformations from cloth animations. With this TS-ACAP representation, our DeformTransformer network first utilizes two mesh-based encoders to extract the coarse and fine features using shared convolutional kernels, respectively. To transduct the coarse features to the fine ones, we leverage the spatial and temporal Transformer network that consists of vertex-level and frame-level attention mechanisms to ensure detail enhancement and temporal coherence of the prediction. Experimental results show that our method is able to produce reliable and realistic animations in various datasets at high frame rates with superior detail synthesis abilities compared to existing methods.Item WYTIWYR: A User Intent-Aware Framework with Multi-modal Inputs for Visualization Retrieval(The Eurographics Association and John Wiley & Sons Ltd., 2023) Xiao, Shishi; Hou, Yihan; Jin, Cheng; Zeng, Wei; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasRetrieving charts from a large corpus is a fundamental task that can benefit numerous applications such as visualization recommendations. The retrieved results are expected to conform to both explicit visual attributes (e.g., chart type, colormap) and implicit user intents (e.g., design style, context information) that vary upon application scenarios. However, existing examplebased chart retrieval methods are built upon non-decoupled and low-level visual features that are hard to interpret, while definition-based ones are constrained to pre-defined attributes that are hard to extend. In this work, we propose a new framework, namely WYTIWYR (What-You-Think-Is-What-You-Retrieve), that integrates user intents into the chart retrieval process. The framework consists of two stages: first, the Annotation stage disentangles the visual attributes within the query chart; and second, the Retrieval stage embeds the user's intent with customized text prompt as well as bitmap query chart, to recall targeted retrieval result. We develop a prototype WYTIWYR system leveraging a contrastive language-image pre-training (CLIP) model to achieve zero-shot classification as well as multi-modal input encoding, and test the prototype on a large corpus with charts crawled from the Internet. Quantitative experiments, case studies, and qualitative interviews are conducted. The results demonstrate the usability and effectiveness of our proposed framework.