Volume 42 (2023)
Permanent URI for this community
Browse
Browsing Volume 42 (2023) by Subject "Animation"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Efficient Interpolation of Rough Line Drawings(The Eurographics Association and John Wiley & Sons Ltd., 2023) Chen, Jiazhou; Zhu, Xinding; Even, Melvin; Basset, Jean; Bénard, Pierre; Barla, Pascal; Chaine, Raphaëlle; Deng, Zhigang; Kim, Min H.In traditional 2D animation, sketches drawn at distant keyframes are used to design motion, yet it would be far too laborintensive to draw all the inbetween frames to fully visualize that motion. We propose a novel efficient interpolation algorithm that generates these intermediate frames in the artist's drawing style. Starting from a set of registered rough vector drawings, we first generate a large number of candidate strokes during a pre-process, and then, at each intermediate frame, we select the subset of those that appropriately conveys the underlying interpolated motion, interpolates the stroke distributions of the key drawings, and introduces a minimum amount of temporal artifacts. In addition, we propose quantitative error metrics to objectively evaluate different stroke selection strategies. We demonstrate the potential of our method on various animations and drawing styles, and show its superiority over competing raster- and vector-based methods.Item Illustrative Motion Smoothing for Attention Guidance in Dynamic Visualizations(The Eurographics Association and John Wiley & Sons Ltd., 2023) Eschner, Johannes; Mindek, Peter; Waldner, Manuela; Bujack, Roxana; Archambault, Daniel; Schreck, Tobias3D animations are an effective method to learn about complex dynamic phenomena, such as mesoscale biological processes. The animators' goals are to convey a sense of the scene's overall complexity while, at the same time, visually guiding the user through a story of subsequent events embedded in the chaotic environment. Animators use a variety of visual emphasis techniques to guide the observers' attention through the story, such as highlighting, halos - or by manipulating motion parameters of the scene. In this paper, we investigate the effect of smoothing the motion of contextual scene elements to attract attention to focus elements of the story exhibiting high-frequency motion. We conducted a crowdsourced study with 108 participants observing short animations with two illustrative motion smoothing strategies: geometric smoothing through noise reduction of contextual motion trajectories and visual smoothing through motion blur of context items. We investigated the observers' ability to follow the story as well as the effect of the techniques on speed perception in a molecular scene. Our results show that moderate motion blur significantly improves users' ability to follow the story. Geometric motion smoothing is less effective but increases the visual appeal of the animation. However, both techniques also slow down the perceived speed of the animation. We discuss the implications of these results and derive design guidelines for animators of complex dynamic visualizations.Item Non-linear Rough 2D Animation using Transient Embeddings(The Eurographics Association and John Wiley & Sons Ltd., 2023) Even, Melvin; Bénard, Pierre; Barla, Pascal; Myszkowski, Karol; Niessner, MatthiasTraditional 2D animation requires time and dedication since tens of thousands of frames need to be drawn by hand for a typical production. Many computer-assisted methods have been proposed to automatize the generation of inbetween frames from a set of clean line drawings, but they are all limited by a rigid workflow and a lack of artistic controls, which is in the most part due to the one-to-one stroke matching and interpolation problems they attempt to solve. In this work, we take a novel view on those problems by focusing on an earlier phase of the animation process that uses rough drawings (i.e., sketches). Our key idea is to recast the matching and interpolation problems so that they apply to transient embeddings, which are groups of strokes that only exist for a few keyframes. A transient embedding carries strokes between keyframes both forward and backward in time through a sequence of transformed lattices. Forward and backward strokes are then cross-faded using their thickness to yield rough inbetweens. With our approach, complex topological changes may be introduced while preserving visual motion continuity. As demonstrated on state-of-the-art 2D animation exercises, our system provides unprecedented artistic control through the non-linear exploration of movements and dynamics in real-time.Item Online Avatar Motion Adaptation to Morphologically-similar Spaces(The Eurographics Association and John Wiley & Sons Ltd., 2023) Choi, Soojin; Hong, Seokpyo; Cho, Kyungmin; Kim, Chaelin; Noh, Junyong; Myszkowski, Karol; Niessner, MatthiasIn avatar-mediated telepresence systems, a similar environment is assumed for involved spaces, so that the avatar in a remote space can imitate the user's motion with proper semantic intention performed in a local space. For example, touching on the desk by the user should be reproduced by the avatar in the remote space to correctly convey the intended meaning. It is unlikely, however, that the two involved physical spaces are exactly the same in terms of the size of the room or the locations of the placed objects. Therefore, a naive mapping of the user's joint motion to the avatar will not create the semantically correct motion of the avatar in relation to the remote environment. Existing studies have addressed the problem of retargeting human motions to an avatar for telepresence applications. Few studies, however, have focused on retargeting continuous full-body motions such as locomotion and object interaction motions in a unified manner. In this paper, we propose a novel motion adaptation method that allows to generate the full-body motions of a human-like avatar on-the-fly in the remote space. The proposed method handles locomotion and object interaction motions as well as smooth transitions between them according to given user actions under the condition of a bijective environment mapping between morphologically-similar spaces. Our experiments show the effectiveness of the proposed method in generating plausible and semantically correct full-body motions of an avatar in room-scale space.