EGGH99: SIGGRAPH/Eurographics Workshop on Graphics Hardware 1999
Permanent URI for this collection
Browse
Browsing EGGH99: SIGGRAPH/Eurographics Workshop on Graphics Hardware 1999 by Subject "and texture"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Fast Footprint MlPmapping(The Eurographics Association, 1999) Hüttner, Tobias; Straßer, Wolfgang; A. Kaufmann and W. Strasser and S. Molnar and B.- O. SchneiderMapping textures onto surfaces of computer-generated objects is a technique which greatly improves the realism of their appearance. In this paper, we describe a new method for efficient and fast texture filtering to prevent aliasing during texture mapping. This method, called Fast Footprint MIPmapping, is very flexible and can be adapted to the internal bandwrdth of a graphrcs system. It adopts the prefiltered MIPmap data structure of currently available trilinear MIPmapping implementatrons, but exploits the texels fetched from texture memory in a more optimal manner. Furthermore, like trilinear MIPmapping, fast footprint MIPmapping can easily be realized in hardware. It is sufficient to fetch only eight texels per textured pixel to achieve a significant improvement over classical trilinear MIPmapping.Item Multiresolution Rendering With Displacement Mapping(The Eurographics Association, 1999) Gumhold, Stefan; Hüttner, Tobias; A. Kaufmann and W. Strasser and S. Molnar and B.- O. SchneiderIn this paper, we present for the first time an approach for hardware accelerated displacement mapping. The displaced surface is generated from a 2D displacement map by remeshing a coarse triangle mesh according to the screen projection of the surface The remeshing algorithm is implemented in hardware. Filtered access to the displacement map makes our approach competitive with available view dependent multiresolution techniques. The advantage of displacement mapping is the compact representation. A displacement mapped surface consumes together with all filter levels only a fraction of the storage space needed for a hardware compatible representation of an equivalent triangle mesh. A possible design of the displacement mapping rendering pipeline is proposed. Previously described hardware components are used as often as possible. Our approach can be smoothly integrated into all available graphics application programming interfaces. Most existing graphics applications can be extended to the new feature with marginal effort.