vriphys: Workshop in Virtual Reality Interactions and Physical Simulations
Permanent URI for this community
Browse
Browsing vriphys: Workshop in Virtual Reality Interactions and Physical Simulations by Subject "Animation and Virtual Reality"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Fast Simulation of Inextensible Hair and Fur(The Eurographics Association, 2012) Müller, Matthias; Kim, Tae-Yong; Chentanez, Nuttapong; Jan Bender and Arjan Kuijper and Dieter W. Fellner and Eric GuerinIn this short paper we focus on the fast simulation of hair and fur on animated characters. While it is common in films to simulate single hair strands on virtual humans and on furry animals, those features are either not present on characters in computer games or modeled with simplified textured meshes. The main difficulty of simulating hair in real time applications is the sheer number of hair strands and the fact that each hair is inextensible. Keeping thousands of deformable objects from being stretched is computationally expensive. In this paper, we present a robust method for simulating hair and fur that guarantees inextensiblity with a single iteration per frame. For an iteration count this low, existing methods either become unstable or introduce a substantial amount of stretching. Our method is geometric in nature and able to simulate thousands of inextensible hair strands in real time.Item An Implicit Tensor-Mass Solver on the GPU for Soft Bodies Simulation(The Eurographics Association, 2012) Faure, Xavier; Zara, Florence; Jaillet, Fabrice; Moreau, Jean-MichelThe realistic and interactive simulation of deformable objects has become a challenge in Computer Graphics. In this paper, we propose a GPU implementation of the resolution of the mechanical equations, using a semi-implicit as well as an implicit integration scheme. At the contrary of the classical FEM approach, forces are directly computed at each node of the discretized objects, using the evaluation of the strain energy density of the elements. This approach allows to mix several mechanical behaviors in the same object. Results show a notable speedup of 30, especially in the case of complex scenes. Running times shows that this efficient implementation may contribute to make this model more popular for soft bodies simulations.