vriphys14
Permanent URI for this collection
Browse
Browsing vriphys14 by Subject "I.3.5 [Computer Graphics]"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item Continuous Collision Detection Between Points and Signed Distance Fields(The Eurographics Association, 2014) Xu, Hongyi; Barbic, Jernej; Jan Bender and Christian Duriez and Fabrice Jaillet and Gabriel ZachmannWe present an algorithm for fast continuous collision detection between points and signed distance fields. Such robust queries are often needed in computer animation, haptics and virtual reality applications, but have so far only been investigated for polygon (triangular) geometry representations. We demonstrate how to use an octree subdivision of the distance field for fast traversal of distance field cells. We also give a method to combine octree subdivision with points organized into a tree hierarchy, for efficient culling of continuous collision detection tests. We apply our method to multibody rigid simulations, and demonstrate that our method accelerates continuous collision detection between points and distance fields by an order of magnitude.Item Controlling the Shape and Motion of Plumes in Explosion Simulations(The Eurographics Association, 2014) Kawada, Genichi; Kanai, Takashi; Jan Bender and Christian Duriez and Fabrice Jaillet and Gabriel ZachmannWe propose a fluid simulation method with controlling the shape and motion of rising fire and smoke, called plumes, in the incompressible phase of explosion phenomenon. With our method, plumes are generated based on physical phenomenon called entrainment, which strongly characterizes plume behaviors such as rise and circulation. We consider to newly utilize properties characterizing these behavior (physical property). Then, control elements of plume such as rising velocity, size, and the magnitude and position of swirling motions are individually adjusted using these physical properties. With this method, each control element is adjusted by the velocity field which represents the corresponding behavior. By combining all velocity fields and applying those fields to grid-based simulation, plumes can be generated. Our method is unique in that it can both generate and control plumes based on one unified physical model, and this type of model is firstly proposed here. Consequently, our method realizes plumes in the incompressible phase which maintain their physical characteristics as much as possible while being controlled by the user.Item Coupling Hair with Smoothed Particle Hydrodynamics Fluids(The Eurographics Association, 2014) Lin, Wei-Chin; Jan Bender and Christian Duriez and Fabrice Jaillet and Gabriel ZachmannWe present a two-way coupling technique for simulating the complex interaction between hair and fluids. In our approach, the motion of hair and fluids is simulated by evaluating the hydrodynamic forces among them based on boundary handling techniques used in SPH (Smoothed Particle Hydrodynamics) fluids. When hair makes contact with fluids, water absorption inside the hair volume can be simulated with a diffusion process by treating the hair volume as porous media with anisotropic permeability. The saturation of each hair strand is then used to derive the adhesive force between wet hair strands. This enables us to simulate the formation of hair clumps dynamically without the need to employ post clumping processes. The proposed method can be easily applied to any SPH fluid solvers as well as various hair models.Item An Improved Jacobi Solver for Particle Simulation(The Eurographics Association, 2014) Frâncu, Mihai; Moldoveanu, F.; Jan Bender and Christian Duriez and Fabrice Jaillet and Gabriel ZachmannThis paper presents a new method for simulating particles for computer graphics and video games, based on an improved Jacobi solver and a hybrid approach between velocity time stepping and position based dynamics. Current constrained dynamics solvers use relaxation iterative methods like Gauss-Seidel or Jacobi. We propose a new iterative method based on a minimum residual variant of the Conjugate Gradient algorithm and show that it can be formulated as an improvement to the Jacobi method. We also describe an adaptation of position based dynamics to better handle contact and friction and allow tight two way coupling with velocity level methods.Item Massively Parallel Batch Neural Gas for Bounding Volume Hierarchy Construction(The Eurographics Association, 2014) Weller, René; Mainzer, David; Srinivas, Abhishek; Teschner, Matthias; Zachmann, Gabriel; Jan Bender and Christian Duriez and Fabrice Jaillet and Gabriel ZachmannOrdinary bounding volume hierarchy (BVH) construction algorithms create BVHs that approximate the boundary of the objects. In this paper, we present a BVH construction that instead approximates the volume of the objects with successively finer levels. It is based on Batch Neural Gas (BNG), a clustering algorithm that is known from machine learning. Additionally, we present a novel massively parallel version of this BNG-based hierarchy construction that runs completely on the GPU. It reduces the theoretical complexity of the sequential algorithm from O(nlogn) to O(log2 n) and also our CUDA implementation outperforms the CPU version significantly in practice.Item Mechanical Modeling of Three-dimensional Plant Tissue Indented by a Probe(The Eurographics Association, 2014) Malgat, Richard; Boudaoud, Arezki; Faure, François; Jan Bender and Christian Duriez and Fabrice Jaillet and Gabriel ZachmannMorphogenesis in a developing organism depends on the mechanics of the structural elements of the organism. In plants, typical experiments involve indenting tissues with a probe and measuring the force needed to reach a given depth. However, the heterogeneous structure and complex geometry of living tissues makes it a challenge to determine how such measurements are related to mechanical properties of the tissue, such as elastic moduli or internal pressure. Indeed, this task requires to perform a large number of direct mechanical simulations with a mesh representing the tissue. Here we propose a framework to achieve this task, using the Simulation Open Framework Architecture (SOFA) platform. We start from a realistic tissue structure corresponding to an early flower bud. We use a mesh where cells are polyhedral-shaped and are made of a liquid under pressure and where the faces separating two cells are thin elastic plates undergoing bending and stretching, and we model the interaction of this mesh with a spherical rigid probe. We obtain force versus depth curves that can be compared to experimental data. Thus our framework enables a comprehensive exploration of how mechanical parameters and probe position influence experimental outcomes, yielding a first step toward understanding the mechanical basis of morphogenesis.Item A p-Multigrid Algorithm using Cubic Finite Elements for Efficient Deformation Simulation(The Eurographics Association, 2014) Weber, Daniel; Mueller-Roemer, Johannes; Altenhofen, Christian; Stork, Andre; Fellner, Dieter W.; Jan Bender and Christian Duriez and Fabrice Jaillet and Gabriel ZachmannWe present a novel p-multigrid method for efficient simulation of co-rotational elasticity with higher-order finite elements. In contrast to other multigrid methods proposed for volumetric deformation, the resolution hierarchy is realized by varying polynomial degrees on a tetrahedral mesh. We demonstrate the efficiency of our approach and compare it to commonly used direct sparse solvers and preconditioned conjugate gradient methods. As the polynomial representation is defined w.r.t. the same mesh, the update of the matrix hierarchy necessary for co-rotational elasticity can be computed efficiently. We introduce the use of cubic finite elements for volumetric deformation and investigate different combinations of polynomial degrees for the hierarchy. We analyze the applicability of cubic finite elements for deformation simulation by comparing analytical results in a static scenario and demonstrate our algorithm in dynamic simulations with quadratic and cubic elements. Applying our method to quadratic and cubic finite elements results in speed up of up to a factor of 7 for solving the linear system.Item Parallel Particles (P2): A Parallel Position Based Approach for Fast and Stable Simulation of Granular Materials(The Eurographics Association, 2014) Holz, Daniel; Jan Bender and Christian Duriez and Fabrice Jaillet and Gabriel ZachmannGranular materials exhibit a large number of diverse physical phenomena which makes their numerical simulation challenging. When set in motion they flow almost like a fluid, while they can present high shear strength when at rest. Those macroscopic effects result from the material's microstructure: a particle skeleton with interlocking particles which stick to and slide across each other, producing soil cohesion and friction. For the purpose of Earthmoving equipment operator training, we developed Parallel Particles (P2), a fast and stable position based granular material simulator which models inter-particle friction and adhesion and captures the physical nature of soil to an extend sufficient for training. Our parallel solver makes the approach scalable and applicable to modern multi-core architectures yielding the simulation speed required in this application. Using a regularization procedure, we successfully model visco-elastic particle interactions on the position level which provides real, physical parameters allowing for intuitive tuning. We employ the proposed technique in an Excavator training simulator and demonstrate that it yields physically plausible results at interactive to real-time simulation rates.Item A Unified Topological-Physical Model for Adaptive Refinement(The Eurographics Association, 2014) Fléchon, Elsa; Zara, Florence; Damiand, Guillaume; Jaillet, Fabrice; Jan Bender and Christian Duriez and Fabrice Jaillet and Gabriel ZachmannIn Computer Graphics, physically-based simulation of deformable objects is a current challenge, and many efficient models have been developed to reach real-time performance. However, these models are often limited when complex interactions involving topological modifications are required. To overcome this, the key issue is to manage concurrently, and at minimal cost, both the topology and physical properties. Thus, this paper presents a unified topological-physical model for soft body simulation. The complete embedding of physical and topological models will facilitate operations like piercing, fracture or cutting, as well as adaptive refinement. Indeed, the difficulty is to treat topological changes during the simulation, requiring combined geometric and physics considerations. Rigorous topological operations guarantee the validity of the mesh, while direct access to the adjacent and incident relations will ease the update of physical properties of new elements created during these operations. These features are illustrated on an embedded mass-spring system undergoing topological modifications performed during simulation. Different levels of subdivision are also presented.