VMV2020
Permanent URI for this collection
Browse
Browsing VMV2020 by Subject "Digital libraries and archives"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Visual Exploration of Cultural Heritage Collections with Linked Spatiotemporal, Shape and Metadata Views(The Eurographics Association, 2020) Lengauer, Stefan; Komar, Alexander; Karl, Stephan; Trinkl, Elisabeth; Preiner, Reinhold; Schreck, Tobias; Krüger, Jens and Niessner, Matthias and Stückler, JörgThe analysis of Cultural Heritage (CH) artefacts is an important task in the Digital Humanities. Increasingly, rich CH artefact data comprising metadata of different modalities becomes available in digital libraries and research data repositories. How- ever, the large amounts and heterogeneity of artefacts in these repositories compromise their accessibility for common domain analysis tasks, as domain researchers lack a structural overview of the spatial, temporal, and categorical traits of the artefacts in these collections. Still, researchers need to compare artefacts along different modalities, put them into context, and deal with possible uncertainties, subjectivities, or missing data. To date, many works support domain research via interactive visuali- sation. The majority relies primarily on visualisation of text and metadata including spatiotemporal, image and shape data. However, fewer consider these types of data in a tightly coupled way. We present an approach for tightly integrated multimodal visual exploration of large CH data collections along space, time and shape traits. Based on requirements obtained in collab- oration with domain researchers, we introduce a set of interlinked views for exploration of said modalities. An appropriately defined approach automatically computes most significant correlations across different modalities, guiding the user towards de- tecting interesting artefact relationships. We apply our approach to pertinent archaeological data collections, and demonstrate that characteristic explorative tasks are effectively supported and domain-relevant artefact relations can be discovered.