SCA 17: Eurographics/SIGGRAPH Symposium on Computer Animation
Permanent URI for this collection
Browse
Browsing SCA 17: Eurographics/SIGGRAPH Symposium on Computer Animation by Subject "cloth"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Inequality Cloth(ACM, 2017) Jin, Ning; Lu, Wenlong; Geng, Zhenglin; Fedkiw, Ronald P.; Bernhard Thomaszewski and KangKang Yin and Rahul NarainAs has been noted and discussed by various authors, numerical simulations of deformable bodies often adversely suffer from so-called ''locking'' artifacts. We illustrate that the ''locking'' of out-of-plane bending motion that results from even an edge-spring-only cloth simulation can be quite severe, noting that the typical remedy of softening the elastic model leads to an unwanted rubbery look. We demonstrate that this ''locking'' is due to the well-accepted notion that edge springs in the cloth mesh should preserve their lengths, and instead propose an inequality constraint that stops edges from stretching while allowing for edge compression as a surrogate for bending. Notably, this also allows for the capturing of bending modes at scales smaller than those which could typically be represented by the mesh. Various authors have recently begun to explore optimization frameworks for deformable body simulation, which is particularly germane to our inequality cloth framework. After exploring such approaches, we choose a particular approach and illustrate its feasibility in a number of scenarios including contact, collision, and self-collision. Our results demonstrate the efficacy of the inequality approach when it comes to folding, bending, and wrinkling, especially on coarser meshes, thus opening up a plethora of interesting possibilities.Item Modeling and Data-Driven Parameter Estimation for Woven Fabrics(ACM, 2017) Clyde, David; Teran, Joseph; Tamstorf, Rasmus; Bernhard Thomaszewski and KangKang Yin and Rahul NarainAccurate estimation of mechanical parameters for simulation of woven fabrics is essential in many fields. To facilitate this we first present a new orthotropic hyperelastic constitutive model for woven fabrics. Next, we design an experimental protocol for characterizing real fabrics based on commercially available tests. Finally, we create a method for accurately fitting the material parameters to the experimental data. The last step is accomplished by solving inverse problems based on a Catmull-Clark subdivision finite element discretization of the Kirchhoff-Love equations for thin shells. Using this approach we are able to reproduce the fully nonlinear behavior corresponding to the captured data with a small number of parameters while maintaining all fundamental invariants from continuum mechanics. The resulting constitutive model can be used with any discretization (e.g., simple triangle meshes) and not just subdivision finite elements. We illustrate the entire process with results for five types of fabric and compare photo reference of the real fabrics to the simulated equivalents.