EG 2023 - Short Papers
Permanent URI for this collection
Browse
Browsing EG 2023 - Short Papers by Subject "Computing methodologies → Computer graphics"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Parallel Loop Subdivision with Sparse Adjacency Matrix(The Eurographics Association, 2023) Wang, Kechun; Chen, Renjie; Babaei, Vahid; Skouras, MelinaSubdivision surface is a popular technique for geometric modeling. Recently, several parallel implementations have been developed for Loop subdivision on the GPU. However, these methods are built on complex data structures which complicate the implementation and affect the performance, especially on the GPU. In this work, we propose to simply use the sparse adjacency matrix which enables us to implement the Loop subdivision scheme in the most straightforward manner. Our implementation run entirely on the GPU and achieves high performance in runtime with significantly lower memory consumption than the state-of-the-art. Through extensive experiments and comparisons, we demonstrate the efficacy and efficiency of our method.Item Quick-Pro-Build: A Web-based Approach for Quick Procedural 3D Reconstructions of Buildings(The Eurographics Association, 2023) Bohlender, Bela; Mühlhäuser, Max; Guinea, Alejandro Sanchez; Babaei, Vahid; Skouras, MelinaWe present Quick-Pro-Build, a web-based approach for quick procedural 3D reconstruction of buildings. Our approach allows users to quickly and easily create realistic 3D models using two integrated reference views: street view and satellite view. We introduce a novel conditional and stochastic shape grammar to represent the procedural models based on the well-established CGA shape grammar. Based on our grammar and user interface, we propose 3 modalities for procedural modeling: 1) model from scratch, 2) copy, paste, and adapt, and 3) summarize, select and adapt. The third modality enables users to model a building by summarizing similar models into an architectural style description, selecting a model from the style description, and adapting it to the target building. Summarizing and selecting allows the third modality to be the most efficient option when modeling a building with a style similar to existing buildings. The third modality is enabled by a novel algorithm that can find and combine similarities from procedural models into a style description and allows learning the preference of the users for one model inside the style description.