Browsing by Author "Hajisharif, Saghi"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Compression and Real-Time Rendering of Inward Looking Spherical Light Fields(The Eurographics Association, 2020) Hajisharif, Saghi; Miandji, Ehsan; Baravadish, Gabriel; Larsson, Per; Unger, Jonas; Wilkie, Alexander and Banterle, FrancescoPhotorealistic rendering is an essential tool for immersive virtual reality. In this regard, the data structure of choice is typically light fields since they contain multidimensional information about the captured environment that can provide motion parallax and view-dependent information such as highlights. There are various ways to acquire light fields depending on the nature of the scene, limitations on the capturing setup, and the application at hand. Our focus in this paper is on full-parallax imaging of large-scale static objects for photorealistic real-time rendering. To this end, we introduce and simulate a new design for capturing inward-looking spherical light fields, and propose a system for efficient compression and real-time rendering of such data using consumer-level hardware suitable for virtual reality applications.Item Deep SVBRDF Acquisition and Modelling: A Survey(© 2024 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2024) Kavoosighafi, Behnaz; Hajisharif, Saghi; Miandji, Ehsan; Baravdish, Gabriel; Cao, Wen; Unger, Jonas; Alliez, Pierre; Wimmer, MichaelHand in hand with the rapid development of machine learning, deep learning and generative AI algorithms and architectures, the graphics community has seen a remarkable evolution of novel techniques for material and appearance capture. Typically, these machine‐learning‐driven methods and technologies, in contrast to traditional techniques, rely on only a single or very few input images, while enabling the recovery of detailed, high‐quality measurements of bi‐directional reflectance distribution functions, as well as the corresponding spatially varying material properties, also known as Spatially Varying Bi‐directional Reflectance Distribution Functions (SVBRDFs). Learning‐based approaches for appearance capture will play a key role in the development of new technologies that will exhibit a significant impact on virtually all domains of graphics. Therefore, to facilitate future research, this State‐of‐the‐Art Report (STAR) presents an in‐depth overview of the state‐of‐the‐art in machine‐learning‐driven material capture in general, and focuses on SVBRDF acquisition in particular, due to its importance in accurately modelling complex light interaction properties of real‐world materials. The overview includes a categorization of current methods along with a summary of each technique, an evaluation of their functionalities, their complexity in terms of acquisition requirements, computational aspects and usability constraints. The STAR is concluded by looking forward and summarizing open challenges in research and development toward predictive and general appearance capture in this field. A complete list of the methods and papers reviewed in this survey is available at .Item Light Field Video Compression and Real Time Rendering(The Eurographics Association and John Wiley & Sons Ltd., 2019) Hajisharif, Saghi; Miandji, Ehsan; Larsson, Per; Tran, Kiet; Unger, Jonas; Lee, Jehee and Theobalt, Christian and Wetzstein, GordonLight field imaging is rapidly becoming an established method for generating flexible image based description of scene appearances. Compared to classical 2D imaging techniques, the angular information included in light fields enables effects such as post-capture refocusing and the exploration of the scene from different vantage points. In this paper, we describe a novel GPU pipeline for compression and real-time rendering of light field videos with full parallax. To achieve this, we employ a dictionary learning approach and train an ensemble of dictionaries capable of efficiently representing light field video data using highly sparse coefficient sets. A novel, key element in our representation is that we simultaneously compress both image data (pixel colors) and the auxiliary information (depth, disparity, or optical flow) required for view interpolation. During playback, the coefficients are streamed to the GPU where the light field and the auxiliary information are reconstructed using the dictionary ensemble and view interpolation is performed. In order to realize the pipeline we present several technical contributions including a denoising scheme enhancing the sparsity in the dataset which enables higher compression ratios, and a novel pruning strategy which reduces the size of the dictionary ensemble and leads to significant reductions in computational complexity during the encoding of a light field. Our approach is independent of the light field parameterization and can be used with data from any light field video capture system. To demonstrate the usefulness of our pipeline, we utilize various publicly available light field video datasets and discuss the medical application of documenting heart surgery.Item Single Sensor Compressive Light Field Video Camera(The Eurographics Association and John Wiley & Sons Ltd., 2020) Hajisharif, Saghi; Miandji, Ehsan; Guillemot, Christine; Unger, Jonas; Panozzo, Daniele and Assarsson, UlfThis paper presents a novel compressed sensing (CS) algorithm and camera design for light field video capture using a single sensor consumer camera module. Unlike microlens light field cameras which sacrifice spatial resolution to obtain angular information, our CS approach is designed for capturing light field videos with high angular, spatial, and temporal resolution. The compressive measurements required by CS are obtained using a random color-coded mask placed between the sensor and aperture planes. The convolution of the incoming light rays from different angles with the mask results in a single image on the sensor; hence, achieving a significant reduction on the required bandwidth for capturing light field videos. We propose to change the random pattern on the spectral mask between each consecutive frame in a video sequence and extracting spatioangular- spectral-temporal 6D patches. Our CS reconstruction algorithm for light field videos recovers each frame while taking into account the neighboring frames to achieve significantly higher reconstruction quality with reduced temporal incoherencies, as compared with previous methods. Moreover, a thorough analysis of various sensing models for compressive light field video acquisition is conducted to highlight the advantages of our method. The results show a clear advantage of our method for monochrome sensors, as well as sensors with color filter arrays.Item SparseBTF: Sparse Representation Learning for Bidirectional Texture Functions(The Eurographics Association, 2023) Kavoosighafi, Behnaz; Frisvad, Jeppe Revall; Hajisharif, Saghi; Unger, Jonas; Miandji, Ehsan; Ritschel, Tobias; Weidlich, AndreaWe propose a novel dictionary-based representation learning model for Bidirectional Texture Functions (BTFs) aiming at compact storage, real-time rendering performance, and high image quality. Our model is trained once, using a small training set, and then used to obtain a sparse tensor containing the model parameters. Our technique exploits redundancies in the data across all dimensions simultaneously, as opposed to existing methods that use only angular information and ignore correlations in the spatial domain. We show that our model admits efficient angular interpolation directly in the model space, rather than the BTF space, leading to a notably higher rendering speed than in previous work. Additionally, the high quality-storage cost tradeoff enabled by our method facilitates controlling the image quality, storage cost, and rendering speed using a single parameter, the number of coefficients. Previous methods rely on a fixed number of latent variables for training and testing, hence limiting the potential for achieving a favorable quality-storage cost tradeoff and scalability. Our experimental results demonstrate that our method outperforms existing methods both quantitatively and qualitatively, as well as achieving a higher compression ratio and rendering speed.