Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Michels, Dominik L."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Interactive Wood Fracture
    (The Eurographics Association, 2020) Hädrich, Torsten; Scheffczyk, Jan; Palubicki, Wojciech; Pirk, Sören; Michels, Dominik L.; Michels, Dominik L.
    Abstract We propose a new approach for the simulation of wood as anisotropic material that takes its inherent fiber structure into account. Our approach is based on the Position-based Dynamics framework. We use the Shape Matching approach as the basis for modeling the isotropic attribute of wood. For simulating anisotropic behavior we employ a fiber model based on the Cosserat rod theory. Our approach supports dynamic fracturing and captures typical breaking patterns of wood.
  • Loading...
    Thumbnail Image
    Item
    Wind Erosion: Shape Modifications by Interactive Particle-based Erosion and Deposition
    (The Eurographics Association, 2020) Krs, Vojtech; Hädrich, Torsten; Michels, Dominik L.; Deussen, Oliver; Pirk, Sören; Benes, Bedrich; Michels, Dominik L.
    We present a novel user-assisted method for physics-inspired modeling of geomorphological features on polygonal meshes using material erosion and deposition as the driving mechanisms. Polygonal meshes defining an input scene are converted into a volumetric data structure that efficiently tracks the mass and boundary of the resulting morphological changes. We use Smoothed Particle Hydrodynamics to simulate fluids and to track eroded material. Eroded material is converted to material particles and naturally deposits in locations such as sinks and corners. Once deposited, we convert material particles back into the volumetric representation.

Eurographics Association © 2013-2025  |  System hosted at Graz University of Technology      
DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback