Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Wang, Bin"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Learning Elastic Constitutive Material and Damping Models
    (The Eurographics Association and John Wiley & Sons Ltd., 2020) Wang, Bin; Deng, Yuanmin; Kry, Paul; Ascher, Uri; Huang, Hui; Chen, Baoquan; Eisemann, Elmar and Jacobson, Alec and Zhang, Fang-Lue
    Commonly used linear and nonlinear constitutive material models in deformation simulation contain many simplifications and only cover a tiny part of possible material behavior. In this work we propose a framework for learning customized models of deformable materials from example surface trajectories. The key idea is to iteratively improve a correction to a nominal model of the elastic and damping properties of the object, which allows new forward simulations with the learned correction to more accurately predict the behavior of a given soft object. Space-time optimization is employed to identify gentle control forces with which we extract necessary data for model inference and to finally encapsulate the material correction into a compact parametric form. Furthermore, a patch based position constraint is proposed to tackle the challenge of handling incomplete and noisy observations arising in real-world examples. We demonstrate the effectiveness of our method with a set of synthetic examples, as well with data captured from real world homogeneous elastic objects.

Eurographics Association © 2013-2025  |  System hosted at Graz University of Technology      
DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback