Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Zwicker, M."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Temporally Consistent Motion Segmentation From RGB‐D Video
    (© 2018 The Eurographics Association and John Wiley & Sons Ltd., 2018) Bertholet, P.; Ichim, A.E.; Zwicker, M.; Chen, Min and Benes, Bedrich
    Temporally consistent motion segmentation from RGB‐D videos is challenging because of the limitations of current RGB‐D sensors. We formulate segmentation as a motion assignment problem, where a motion is a sequence of rigid transformations through all frames of the input. We capture the quality of each potential assignment by defining an appropriate energy function that accounts for occlusions and a sensor‐specific noise model. To make energy minimization tractable, we work with a discrete set instead of the continuous, high dimensional space of motions, where the discrete motion set provides an upper bound for the original energy. We repeatedly minimize our energy, and in each step extend and refine the motion set to further lower the bound. A quantitative comparison to the current state of the art demonstrates the benefits of our approach in difficult scenarios.Temporally consistent motion segmentation from RGB‐D videos is challenging because of the limitations of current RGB‐D sensors. We formulate segmentation as a motion assignment problem, where a motion is a sequence of rigid transformations through all frames of the input. We capture the quality of each potential assignment by defining an appropriate energy function that accounts for occlusions and a sensor‐specific noise model. To make energy minimization tractable, we work with a discrete set instead of the continuous, high dimensional space of motions, where the discrete motion set provides an upper bound for the original energy. We repeatedly minimize our energy, and in each step extend and refine the motion set to further lower the bound. A quantitative comparison to the current state of the art demonstrates the benefits of our approach in difficult scenarios.

Eurographics Association © 2013-2025  |  System hosted at Graz University of Technology      
DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback