Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Zordan, Victor"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Issue Information
    (ACM, 2021) Narain, Rahul; Neff, Michael; Zordan, Victor; Narain, Rahul and Neff, Michael and Zordan, Victor
    Table of Contents, Editors' Preface, and Author Index
  • Loading...
    Thumbnail Image
    Item
    Velocity Skinning for Real-time Stylized Skeletal Animation
    (The Eurographics Association and John Wiley & Sons Ltd., 2021) Rohmer, Damien; Tarini, Marco; Kalyanasundaram, Niranjan; Moshfeghifar, Faezeh; Cani, Marie-Paule; Zordan, Victor; Mitra, Niloy and Viola, Ivan
    Secondary animation effects are essential for liveliness. We propose a simple, real-time solution for adding them on top of standard skinning, enabling artist-driven stylization of skeletal motion. Our method takes a standard skeleton animation as input, along with a skin mesh and rig weights. It then derives per-vertex deformations from the different linear and angular velocities along the skeletal hierarchy. We highlight two specific applications of this general framework, namely the cartoonlike ''squashy'' and ''floppy'' effects, achieved from specific combinations of velocity terms. As our results show, combining these effects enables to mimic, enhance and stylize physical-looking behaviours within a standard animation pipeline, for arbitrary skinned characters. Interactive on CPU, our method allows for GPU implementation, yielding real-time performances even on large meshes. Animator control is supported through a simple interface toolkit, enabling to refine the desired type and magnitude of deformation at relevant vertices by simply painting weights. The resulting rigged character automatically responds to new skeletal animation, without further input.

Eurographics Association © 2013-2025  |  System hosted at Graz University of Technology      
DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback