Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Liu, Hsueh-Ti Derek"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Normal-Driven Spherical Shape Analogies
    (The Eurographics Association and John Wiley & Sons Ltd., 2021) Liu, Hsueh-Ti Derek; Jacobson, Alec; Digne, Julie and Crane, Keenan
    This paper introduces a new method to stylize 3D geometry. The key observation is that the surface normal is an effective instrument to capture different geometric styles. Centered around this observation, we cast stylization as a shape analogy problem, where the analogy relationship is defined on the surface normal. This formulation can deform a 3D shape into different styles within a single framework. One can plug-and-play different target styles by providing an exemplar shape or an energy-based style description (e.g., developable surfaces). Our surface stylization methodology enables Normal Captures as a geometric counterpart to material captures (MatCaps) used in rendering, and the prototypical concept of Spherical Shape Analogies as a geometric counterpart to image analogies in image processing.
  • Loading...
    Thumbnail Image
    Item
    Spectral Mesh Simplification
    (The Eurographics Association and John Wiley & Sons Ltd., 2020) Lescoat, Thibault; Liu, Hsueh-Ti Derek; Thiery, Jean-Marc; Jacobson, Alec; Boubekeur, Tamy; Ovsjanikov, Maks; Panozzo, Daniele and Assarsson, Ulf
    The spectrum of the Laplace-Beltrami operator is instrumental for a number of geometric modeling applications, from processing to analysis. Recently, multiple methods were developed to retrieve an approximation of a shape that preserves its eigenvectors as much as possible, but these techniques output a subset of input points with no connectivity, which limits their potential applications. Furthermore, the obtained Laplacian results from an optimization procedure, implying its storage alongside the selected points. Focusing on keeping a mesh instead of an operator would allow to retrieve the latter using the standard cotangent formulation, enabling easier processing afterwards. Instead, we propose to simplify the input mesh using a spectrum-preserving mesh decimation scheme, so that the Laplacian computed on the simplified mesh is spectrally close to the one of the input mesh. We illustrate the benefit of our approach for quickly approximating spectral distances and functional maps on low resolution proxies of potentially high resolution input meshes.

Eurographics Association © 2013-2025  |  System hosted at Graz University of Technology      
DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback