Browsing by Author "Zhang, Lei"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Physics‐based Pathline Clustering and Exploration(© 2021 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd, 2021) Nguyen, Duong B.; Zhang, Lei; Laramee, Robert S.; Thompson, David; Monico, Rodolfo Ostilla; Chen, Guoning; Benes, Bedrich and Hauser, HelwigMost existing unsteady flow visualization techniques concentrate on the depiction of geometric patterns in flow, assuming the geometry information provides sufficient representation of the underlying physical characteristics, which is not always the case. To address this challenge, this work proposes to analyse the time‐dependent characteristics of the physical attributes measured along pathlines which can be represented as a series of time activity curves (TAC). We demonstrate that the temporal trends of these TACs can convey the relation between pathlines and certain well‐known flow features (e.g. vortices and shearing layers), which enables us to select pathlines that can effectively represent the physical characteristics of interest and their temporal behaviour in the unsteady flow. Inspired by this observation, a new TAC‐based unsteady flow visualization and analysis framework is proposed. The centre of this framework is a new similarity measure that compares the similarity of two TACs, from which a new spatio‐temporal, hierarchical clustering that classifies pathlines based on their physical attributes, and a TAC‐based pathline exploration and selection strategy are proposed. A visual analytic system incorporating the TAC‐based pathline clustering and exploration is developed, which also provides new visualizations to support the user exploration of unsteady flow using TACs. This visual analytic system is applied to a number of unsteady flow in 2D and 3D to demonstrate its utility. The new system successfully reveals the detailed structure of vortices, the relation between shear layer and vortex formation, and vortex breakdown, which are difficult to convey with conventional methods.Item SVBRDF Recovery from a Single Image with Highlights Using a Pre‐trained Generative Adversarial Network(© 2022 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2022) Wen, Tao; Wang, Beibei; Zhang, Lei; Guo, Jie; Holzschuch, Nicolas; Hauser, Helwig and Alliez, PierreSpatially varying bi‐directional reflectance distribution functions (SVBRDFs) are crucial for designers to incorporate new materials in virtual scenes, making them look more realistic. Reconstruction of SVBRDFs is a long‐standing problem. Existing methods either rely on an extensive acquisition system or require huge datasets, which are non‐trivial to acquire. We aim to recover SVBRDFs from a single image, without any datasets. A single image contains incomplete information about the SVBRDF, making the reconstruction task highly ill‐posed. It is also difficult to separate between the changes in colour that are caused by the material and those caused by the illumination, without the prior knowledge learned from the dataset. In this paper, we use an unsupervised generative adversarial neural network (GAN) to recover SVBRDFs maps with a single image as input. To better separate the effects due to illumination from the effects due to the material, we add the hypothesis that the material is stationary and introduce a new loss function based on Fourier coefficients to enforce this stationarity. For efficiency, we train the network in two stages: reusing a trained model to initialize the SVBRDFs and fine‐tune it based on the input image. Our method generates high‐quality SVBRDFs maps from a single input photograph, and provides more vivid rendering results compared to the previous work. The two‐stage training boosts runtime performance, making it eight times faster than the previous work.