Browsing by Author "Hu, Ling"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Anisotropic Spectral Manifold Wavelet Descriptor(© 2021 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd, 2021) Li, Qinsong; Hu, Ling; Liu, Shengjun; Yang, Dangfu; Liu, Xinru; Benes, Bedrich and Hauser, HelwigIn this paper, we present a powerful spectral shape descriptor for shape analysis, named Anisotropic Spectral Manifold Wavelet Descriptor (ASMWD). We proposed a novel manifold harmonic signal processing tool termed Anisotropic Spectral Manifold Wavelet Transform (ASMWT) first. ASMWT allows to comprehensively analyse signals from multiple wavelet diffusion directions on local manifold regions of the shape with a series of low‐pass and band‐pass frequency filters in each direction. Based on the ASMWT coefficients of a very simple signal, the ASMWD is efficiently constructed as a localizable and discriminative multi‐scale point descriptor. Since the wavelets used in our descriptor are direction‐sensitive and able to robustly reconstruct the signals with a finite number of scales, it makes our descriptor compact, efficient, and unambiguous under intrinsic symmetry. The extensive experiments demonstrate that our descriptor achieves significantly better performance than the state‐of‐the‐art descriptors and can greatly improve the performance of shape matching methods including both handcrafted and learning‐based methods.Item WTFM Layer: An Effective Map Extractor for Unsupervised Shape Correspondence(The Eurographics Association and John Wiley & Sons Ltd., 2022) Liu, Shengjun; Xu, Haojun; Yan, Dong-Ming; Hu, Ling; Liu, Xinru; Li, Qinsong; Umetani, Nobuyuki; Wojtan, Chris; Vouga, EtienneWe propose a novel unsupervised learning approach for computing correspondences between non-rigid 3D shapes. The core idea is that we integrate a novel structural constraint into the deep functional map pipeline, a recently dominant learning framework for shape correspondence, via a powerful spectral manifold wavelet transform (SMWT). As SMWT is isometrically invariant operator and can analyze features from multiple frequency bands, we use the multiscale SMWT results of the learned features as function preservation constraints to optimize the functional map by assuming each frequency-band information of the descriptors should be correspondingly preserved by the functional map. Such a strategy allows extracting significantly more deep feature information than existing approaches which only use the learned descriptors to estimate the functional map. And our formula strongly ensure the isometric properties of the underlying map. We also prove that our computation of the functional map amounts to filtering processes only referring to matrix multiplication. Then, we leverage the alignment errors of intrinsic embedding between shapes as a loss function and solve it in an unsupervised way using the Sinkhorn algorithm. Finally, we utilize DiffusionNet as a feature extractor to ensure that discretization-resistant and directional shape features are produced. Experiments on multiple challenging datasets prove that our method can achieve state-of-the-art correspondence quality. Furthermore, our method yields significant improvements in robustness to shape discretization and generalization across the different datasets. The source code and trained models will be available at https://github.com/HJ-Xu/ WTFM-Layer.