Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Shao, Tianjia"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Automatic Mechanism Modeling from a Single Image with CNNs
    (The Eurographics Association and John Wiley & Sons Ltd., 2018) Lin, Minmin; Shao, Tianjia; Zheng, Youyi; Ren, Zhong; Weng, Yanlin; Yang, Yin; Fu, Hongbo and Ghosh, Abhijeet and Kopf, Johannes
    This paper presents a novel system that enables a fully automatic modeling of both 3D geometry and functionality of a mechanism assembly from a single RGB image. The resulting 3D mechanism model highly resembles the one in the input image with the geometry, mechanical attributes, connectivity, and functionality of all the mechanical parts prescribed in a physically valid way. This challenging task is realized by combining various deep convolutional neural networks to provide high-quality and automatic part detection, segmentation, camera pose estimation and mechanical attributes retrieval for each individual part component. On the top of this, we use a local/global optimization algorithm to establish geometric interdependencies among all the parts while retaining their desired spatial arrangement. We use an interaction graph to abstract the inter-part connection in the resulting mechanism system. If an isolated component is identified in the graph, our system enumerates all the possible solutions to restore the graph connectivity, and outputs the one with the smallest residual error. We have extensively tested our system with a wide range of classic mechanism photos, and experimental results show that the proposed system is able to build high-quality 3D mechanism models without user guidance.
  • Loading...
    Thumbnail Image
    Item
    Cloth Animation with Time-dependent Persistent Wrinkles
    (The Eurographics Association and John Wiley & Sons Ltd., 2025) Gong, Deshan; Yang, Yin; Shao, Tianjia; Wang, He; Bousseau, Adrien; Day, Angela
    Persistent wrinkles are often observed on crumpled garments e.g., the wrinkles around the knees after sitting for a while. Such wrinkles can be easily recovered if not deformed for long, and otherwise be persistent. Since they are vital to the visual realism of cloth animation, we aim to simulate realistic looking persistent wrinkles. To this end, we present a physics-inspired finegrained wrinkle model. Different from existing methods, we recognize the importance of the interplay between internal friction and plasticity during wrinkle formation. Furthermore, we model their time dependence for persistent wrinkles. Our model is capable of not only simulating realistic wrinkle patterns, but also their time-dependent changes according to how long the deformation is maintained. Through extensive experiments, we show that our model is effective in simulating realistic spatial and temporal varying wrinkles, versatile in simulating different materials, and capable of generating more fine-grained wrinkles than the state of the art.

Eurographics Association © 2013-2025  |  System hosted at Graz University of Technology      
DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback