Browsing by Author "Fraboni, Basile"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Adaptive Multi-view Path Tracing(The Eurographics Association, 2019) Fraboni, Basile; Iehl, Jean-Claude; Nivoliers, Vincent; Bouchard, Guillaume; Boubekeur, Tamy and Sen, PradeepRendering photo-realistic image sequences using path tracing and Monte Carlo integration often requires sampling a large number of paths to get converged results. In the context of rendering multiple views or animated sequences, such sampling can be highly redundant. Several methods have been developed to share sampled paths between spatially or temporarily similar views. However, such sharing is challenging since it can lead to bias in the final images. Our contribution is a Monte Carlo sampling technique which generates paths, taking into account several cameras. First, we sample the scene from all the cameras to generate hit points. Then, an importance sampling technique generates bouncing directions which are shared by a subset of cameras. This set of hit points and bouncing directions is then used within a regular path tracing solution. For animated scenes, paths remain valid for a fixed time only, but sharing can still occur between cameras as long as their exposure time intervals overlap. We show that our technique generates less noise than regular path tracing and does not introduce noticeable bias.Item Volumetric Multi-View Rendering(The Eurographics Association and John Wiley & Sons Ltd., 2022) Fraboni, Basile; Webanck, Antoine; Bonneel, Nicolas; Iehl, Jean-Claude; Chaine, Raphaƫlle; Kim, Min H.Rendering photo-realistic images using Monte Carlo path tracing often requires sampling a large number of paths to reach acceptable levels of noise. This is particularly the case when rendering participating media, that complexify light paths with multiple scattering events. Our goal is to accelerate the rendering of heterogeneous participating media by exploiting redundancy across views, for instance when rendering animated camera paths, motion blur in consecutive frames or multi-view images such as lenticular or light-field images. This poses a challenge as existing methods for sharing light paths across views cannot handle heterogeneous participating media and classical estimators are not optimal in this context. We address these issues by proposing three key ideas. First, we propose new volume shift mappings to transform light paths from one view to another within the recently introduced null-scattering framework, taking into account changes in density along the transformed path. Second, we generate a shared path suffix that best contributes to a subset of views, thus effectively reducing variance. Third, we introduce the multiple weighted importance sampling estimator that benefits from multiple importance sampling for combining sampling strategies, and from weighted importance sampling for reducing the variance due to non contributing strategies. We observed significant reuse when views largely overlap, with no visible bias and reduced variance compared to regular path tracing at equal time. Our method further readily integrates into existing volumetric path tracing pipelines.