Browsing by Author "Vardis, Konstantinos"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Illumination-driven Light Probe Placement(The Eurographics Association, 2021) Vardis, Konstantinos; Vasilakis, Andreas Alexandros; Papaioannou, Georgios; Bittner, JirĂ and Waldner, ManuelaWe introduce a simplification method for light probe configurations that preserves the indirect illumination distribution in scenes with diverse lighting conditions. An iterative graph simplification algorithm discards the probes that, according to a set of evaluation points, have the least impact on the global light field. Our approach is simple, generic and aims at improving the repetitive and often non-intuitive and tedious task of placing light probes on complex virtual environments.Item Rayground: An Online Educational Tool for Ray Tracing(The Eurographics Association, 2020) Vitsas, Nick; Gkaravelis, Anastasios; Vasilakis, Andreas-Alexandros; Vardis, Konstantinos; Papaioannou, Georgios; Romero, Mario and Sousa Santos, BeatriceIn this paper, we present Rayground; an online, interactive education tool for richer in-class teaching and gradual self-study, which provides a convenient introduction into practical ray tracing through a standard shader-based programming interface. Setting up a basic ray tracing framework via modern graphics APIs, such as DirectX 12 and Vulkan, results in complex and verbose code that can be intimidating even for very competent students. On the other hand, Rayground aims to demystify ray tracing fundamentals, by providing a well-defined WebGL-based programmable graphics pipeline of configurable distinct ray tracing stages coupled with a simple scene description format. An extensive discussion is further offered describing how both undergraduate and postgraduate computer graphics theoretical lectures and laboratory sessions can be enhanced by our work, to achieve a broad understanding of the underlying concepts. Rayground is open, cross-platform, and available to everyone.Item Sampling Clear Sky Models using Truncated Gaussian Mixtures(The Eurographics Association, 2021) Vitsas, Nick; Vardis, Konstantinos; Papaioannou, Georgios; Bousseau, Adrien and McGuire, MorganParametric clear sky models are often represented by simple analytic expressions that can efficiently generate plausible, natural radiance maps of the sky, taking into account expensive and hard to simulate atmospheric phenomena. In this work, we show how such models can be complemented by an equally simple, elegant and generic analytic continuous probability density function (PDF) that provides a very good approximation to the radiance-based distribution of the sky. We describe a fitting process that is used to properly parameterise a truncated Gaussian mixture model, which allows for exact, constant-time and minimal-memory sampling and evaluation of this PDF, without rejection sampling, an important property for practical applications in offline and real-time rendering. We present experiments in a standard importance sampling framework that showcase variance reduction approaching that of a more expensive inversion sampling method using Summed Area Tables.Item A Survey of Multifragment Rendering(The Eurographics Association and John Wiley & Sons Ltd., 2020) Vasilakis, Andreas Alexandros; Vardis, Konstantinos; Papaioannou, Georgios; Mantiuk, Rafal and Sundstedt, VeronicaIn the past few years, advances in graphics hardware have fuelled an explosion of research and development in the field of interactive and real-time rendering in screen space. Following this trend, a rapidly increasing number of applications rely on multifragment rendering solutions to develop visually convincing graphics applications with dynamic content. The main advantage of these approaches is that they encompass additional rasterised geometry, by retaining more information from the fragment sampling domain, thus augmenting the visibility determination stage. With this survey, we provide an overview of and insight into the extensive, yet active research and respective literature on multifragment rendering. We formally present the multifragment rendering pipeline, clearly identifying the construction strategies, the core image operation categories and their mapping to the respective applications. We describe features and trade-offs for each class of techniques, pointing out GPU optimisations and limitations and provide practical recommendations for choosing an appropriate method for each application. Finally, we offer fruitful context for discussion by outlining some existing problems and challenges as well as by presenting opportunities for impactful future research directions.