Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • ÄŚeština
  • Deutsch
  • Español
  • Français
  • GĂ idhlig
  • Latviešu
  • Magyar
  • Nederlands
  • PortuguĂŞs
  • PortuguĂŞs do Brasil
  • Suomi
  • Svenska
  • TĂĽrkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Boulch, Alexandre"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Generalizing Discrete Convolutions for Unstructured Point Clouds
    (The Eurographics Association, 2019) Boulch, Alexandre; Biasotti, Silvia and Lavoué, Guillaume and Veltkamp, Remco
    Point clouds are unstructured and unordered data, as opposed to images. Thus, most of machine learning approaches, developed for images, cannot be directly transferred to point clouds. It usually requires data transformation such as voxelization, inducing a possible loss of information. In this paper, we propose a generalization of the discrete convolutional neural networks (CNNs) able to deal with sparse input point cloud. We replace the discrete kernels by continuous ones. The formulation is simple, does not set the input point cloud size and can easily be used for neural network design similarly to 2D CNNs. We present experimental results, competitive with the state of the art, on shape classification, part segmentation and semantic segmentation for large scale clouds.

Eurographics Association © 2013-2025  |  System hosted at Graz University of Technology      
DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback